題目列表(包括答案和解析)
設(shè)是直角坐標(biāo)系中,x軸、y軸正方向上的單位向量,設(shè)
(1)若(,求
.
(2)若時(shí),求
的夾角
的余弦值.
(3)是否存在實(shí)數(shù),使
,若存在求出
的值,不存在說明理由.
【解析】第一問中,利用向量的數(shù)量積為0,解得為m=-2
第二問中,利用時(shí),結(jié)合向量
的夾角
的余弦值公式解得
第三問中,利用向量共線,求解得到m不存在。
(1)因?yàn)樵O(shè)是直角坐標(biāo)系中,x軸、y軸正方向上的單位向量,設(shè)
(2)因?yàn)?/p>
即;
(3)假設(shè)存在實(shí)數(shù),使
,則有
因此不存在;
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)時(shí),求證:
;
(Ⅱ)若邊上有且只有一個(gè)點(diǎn)
,使得
,求此時(shí)二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分
又,得證。
第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,又
………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
1.D
2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對(duì)照四個(gè)選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,M,
N,因此,
(
),又A∩B=
,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=
.
5.A 提示:由得
,當(dāng)
時(shí),△
,
得,當(dāng)
時(shí),△
,且
,即
所以
6.A 7.D 8.A
9.D提示:設(shè)3x2-4x-32<0的一個(gè)必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:P
Q.
10.A 11.B
12.D 提示:由,又因?yàn)?sub>
是
的充分而不必要條件,所以
,即
?芍狝=
或方程
的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:
(1);
(2)
;綜合(1)、(2)可得
。
二、填空題
13.3 14.
w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com