日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 12.已知 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=4sin(2x-
          π
          3
          )+1
          ,給定條件p:
          π
          4
          ≤x≤
          π
          2
          ,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
           

          查看答案和解析>>

          已知△ABC的外接圓的圓心O,BC>CA>AB,則
          OA
          OB
          ,
          OA
          OC
          OB
          OC
          的大小關(guān)系為
           

          查看答案和解析>>

          已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
          52
          ))的值是
           

          查看答案和解析>>

          15、已知y=2x,x∈[2,4]的值域為集合A,y=log2[-x2+(m+3)x-2(m+1)]定義域為集合B,其中m≠1.
          (Ⅰ)當(dāng)m=4,求A∩B;
          (Ⅱ)設(shè)全集為R,若A⊆CRB,求實數(shù)m的取值范圍.

          查看答案和解析>>

          已知y=f(x)是定義在[-1,1]上的奇函數(shù),x∈[0,1]時,f(x)=
          4x+a
          4x+1

          (Ⅰ)求x∈[-1,0)時,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
          (Ⅱ)解不等式f(x)>
          1
          5

          查看答案和解析>>

           

          一、

          DACCA  BDB

          二、

          9.16    10.2009      11.      12.     

          13.    14.3        15.②③

          三、

          16.解:(1)由余弦定理得:

          是以角C為直角的直角三角形.……………………6分

          (2)

          ………………①

          ………………②

          ②÷①得,

          ……………………12分

          17.解:(1)因為……………………………………(2分)

                 ……………………………………………………(4分)

                

          所以線路信息通暢的概率為!6分)

             (2)的所有可能取值為4,5,6,7,8。

                

                 ……………………………………………………………(9分)

                 ∴的分布列為

          4

          5

          6

          7

          8

          P

                 …………………………………………………………………………………………(10分)

          ∴E=4×+5×+6×+7×+8×=6!12分)

          18.解:解法一:(1)證明:連結(jié)OC,

          ABD為等邊三角形,O為BD的中點,∴AO

          垂直BD!1分)

                 ∴ AO=CO=!2分)

                 在AOC中,AC=,∴AO2+CO2=AC2,

          ∴∠AOC=900,即AO⊥OC。

                 ∴BDOC=O,∴AO⊥平面BCD!3分)

             (2)過O作OE垂直BC于E,連結(jié)AE,

              ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

              ∴AE⊥BC。

              ∠AEO為二面角A―BC―D的平面角!7分)

                 在RtAEO中,AO=,OE=,

          ,

                 ∴∠AEO=arctan2。

                 二面角A―BC―D的大小為arctan2。

                 (3)設(shè)點O到面ACD的距離為∵VO-ACD=VA-OCD

          。

                 在ACD中,AD=CD=2,AC=,

          。

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

                 ∴點O到平面ACD的距離為。…………………(12分)

          解法二:(1)同解法一。

                 (2)以O(shè)為原點,如圖建立空間直角坐標(biāo)系,

                 則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

                 ∵AO⊥平面DCD,

                 ∴平面BCD的法向量=(0,0,)。…………………………………………(5分)

            1.        ,

                     由。設(shè)夾角為,

                     則。

                     ∴二面角A―BC―D的大小為arccos!8分)

                 (3)解:設(shè)平面ACD的法向量為

              。………………………………(11分)

              設(shè)夾角為,則

              設(shè)O到平面ACD的距離為,

              ,

              ∴O到平面ACD的距離為!12分)19.解:(1).

              …共線,該直線過點P1(a,a),

              斜率為……………………3分

              當(dāng)時,An是一個三角形與一個梯形面積之和(如上圖所示),梯形面積是

              于是

              …………………………7分

              (2)結(jié)合圖象,當(dāng)

              ,……………………10分

              而當(dāng)

              ,

              故當(dāng)1<a>2時,存在正整數(shù)n,使得……………………13分

              20.解:(1)

              設(shè)橢圓C的標(biāo)準(zhǔn)方程為,

              為正三角形,

              a=2b,結(jié)合

              ∴所求為……………………2分

              (2)設(shè)P(x,y)M(),N(),

              直線l的方程為得,

              ……………………4分

              ………………6分

              且滿足上述方程,

              ………………7分

              (3)由(2)得, 

              …………………………9分

              ……………………10分

              設(shè)

              面積的最大值為…………………………13分

              21.解:(1)由

              即可求得……………………3分

              (2)當(dāng)>0,

              不等式…(5分)

               

              由于

              ……………………7分

              當(dāng)

              當(dāng)

              當(dāng)

              ,

              于是由;………………9分

              (3)由(2)知,

              在上式中分別令x=再三式作和即得

              所以有……………………13分