日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2.數(shù)形結合是解集合問題的常用方法:解題時要盡可能地借助數(shù)軸.直角坐標系或韋恩圖等工具.將抽象的代數(shù)問題具體化.形象化.直觀化.然后利用數(shù)形結合的思想方法解決, 查看更多

           

          題目列表(包括答案和解析)

          (2007•普陀區(qū)一模)現(xiàn)有問題:“對任意x>0,不等式x-a+
          1
          x+a
          >0恒成立,求實數(shù)a的取值范圍.”有兩位同學用數(shù)形結合的方法分別提出了自己的解題思路和答案:
          學生甲:在一個坐標系內作出函數(shù)f(x)=
          1
          x+a
          和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
          學生乙:在坐標平面內作出函數(shù)f(x)=x+a+
          1
          x+a
          的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
          則以下對上述兩位同學的解題方法和結論的判斷都正確的是( 。

          查看答案和解析>>

          現(xiàn)有問題:“對任意x>0,不等式x-a+>0恒成立,求實數(shù)a的取值范圍.”有兩位同學用數(shù)形結合的方法分別提出了自己的解題思路和答案:
          學生甲:在一個坐標系內作出函數(shù)和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
          學生乙:在坐標平面內作出函數(shù)的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
          則以下對上述兩位同學的解題方法和結論的判斷都正確的是( )
          A.甲同學方法正確,結論錯誤
          B.乙同學方法正確,結論錯誤
          C.甲同學方法正確,結論正確
          D.乙同學方法錯誤,結論正確

          查看答案和解析>>

          現(xiàn)有問題:“對任意x>0,不等式x-a+數(shù)學公式>0恒成立,求實數(shù)a的取值范圍.”有兩位同學用數(shù)形結合的方法分別提出了自己的解題思路和答案:
          學生甲:在一個坐標系內作出函數(shù)數(shù)學公式和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
          學生乙:在坐標平面內作出函數(shù)數(shù)學公式的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
          則以下對上述兩位同學的解題方法和結論的判斷都正確的是


          1. A.
            甲同學方法正確,結論錯誤
          2. B.
            乙同學方法正確,結論錯誤
          3. C.
            甲同學方法正確,結論正確
          4. D.
            乙同學方法錯誤,結論正確

          查看答案和解析>>

          設拋物線>0)的焦點為,準線為上一點,已知以為圓心,為半徑的圓,兩點.

          (Ⅰ)若,的面積為,求的值及圓的方程;

           (Ⅱ)若,,三點在同一條直線上,直線平行,且只有一個公共點,求坐標原點到,距離的比值.

          【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關系、點到直線距離公式、線線平行等基礎知識,考查數(shù)形結合思想和運算求解能力.

          【解析】設準線軸的焦點為E,圓F的半徑為,

          則|FE|=,=,E是BD的中點,

          (Ⅰ) ∵,∴=,|BD|=,

          設A(,),根據(jù)拋物線定義得,|FA|=,

          的面積為,∴===,解得=2,

          ∴F(0,1),  FA|=,  ∴圓F的方程為:;

          (Ⅱ) 解析1∵,三點在同一條直線上, ∴是圓的直徑,,

          由拋物線定義知,∴,∴的斜率為或-,

          ∴直線的方程為:,∴原點到直線的距離=

          設直線的方程為:,代入得,,

          只有一個公共點, ∴=,∴,

          ∴直線的方程為:,∴原點到直線的距離=,

          ∴坐標原點到距離的比值為3.

          解析2由對稱性設,則

                點關于點對稱得:

               得:,直線

               切點

               直線

          坐標原點到距離的比值為

           

          查看答案和解析>>

          已知函數(shù)f(x)=|x-1|+|x-2|+…+|x-n|(n∈N*),f(x)的最小值記為an.數(shù)形結合可得a1=0,a2=1,…則a3=
           
          ,當n是奇數(shù)時,an=
           

          查看答案和解析>>


          同步練習冊答案