日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20.解依題意:此試驗為獨立重復(fù)試驗問題.所以隨機變量.符合二項分布. 由二項分布的期望公式 =2×0.5=1. (注:也可列分布列根據(jù)定義求之) (2)甲獲勝情況有三種: ①甲正面向上1次.乙正面向上0次: ②甲正面向上2次.乙正面向上0次或1次: ③甲正面向上3次.乙正面向上0次.1次或2次. 綜上所述.甲獲勝的概率為: 查看更多

           

          題目列表(包括答案和解析)

          一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當(dāng)日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區(qū)域供水千噸.

          (1)多少小時后,蓄水池存水量最少?

          (2)當(dāng)蓄水池存水量少于3千噸時,供水就會出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時間有多長?

          【解析】第一問中(1)設(shè)小時后,蓄水池有水千噸.依題意,當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸

          第二問依題意,   解得:

          解:(1)設(shè)小時后,蓄水池有水千噸.………………………………………1分

          依題意,…………………………………………4分

          當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸. ………2分

          (2)依題意,   ………………………………………………3分

          解得:.  …………………………………………………………………3分

          所以,當(dāng)天有8小時會出現(xiàn)供水緊張的情況

           

          查看答案和解析>>

          如圖,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點).

          (1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

          (2)求證:);

          (3)設(shè),對所有,恒成立,求實數(shù)的取值范圍.

          【解析】第一問利用有,得到

          第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及

          第三問 

          .………………………2分

          因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

          解:(1)依題意,有,,………………4分

          (2)證明:①當(dāng)時,可求得,命題成立; ……………2分

          ②假設(shè)當(dāng)時,命題成立,即有,……………………1分

          則當(dāng)時,由歸納假設(shè)及,

          解得不合題意,舍去)

          即當(dāng)時,命題成立.  …………………………………………4分

          綜上所述,對所有,.    ……………………………1分

          (3) 

          .………………………2分

          因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>

          如圖,已知點和單位圓上半部分上的動點B.

          (1)若,求向量;

          (2)求的最大值.

          【解析】對于這樣的向量的坐標(biāo)和模最值的求解,利用建立直角坐標(biāo)系的方法可知。

          第一問中,依題意,,

          因為,所以,即

          解得,所以

          第二問中,結(jié)合三角函數(shù)的性質(zhì)得到最值。

          (1)依題意,,(不含1個或2個端點也對)

           (寫出1個即可)

          因為,所以,即,

          解得,所以.-

          (2),

           當(dāng)時,取得最大值,

           

          查看答案和解析>>

          (2012•甘肅一模)(文科)某中學(xué)高一年級美術(shù)學(xué)科開設(shè)書法、繪畫、雕塑三門校本選修課,學(xué)生可選也可不選,學(xué)生是否選修哪門課互不影響.已知某學(xué)生只選修書法的概率為0.08,只選修書法和繪畫的概率是0.12,至少選修一門的概率是0.88.
          (1)依題意分別計算該學(xué)生選修書法、繪畫、雕塑三門校本選修課的概率;
          (2)用a表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,記“f(x)=x2+ax為R上的偶函數(shù)”為事件A,求事件A發(fā)生的概率.

          查看答案和解析>>

          (2012•甘肅一模)(理科)某中學(xué)高一年級美術(shù)學(xué)科開設(shè)書法、繪畫、雕塑三門校本選修課,學(xué)生可選也可不選,學(xué)生是否選修哪門課互不影響.已知某學(xué)生只選修書法的概率為0.08,只選修書法和繪畫的概率是0.12,至少選修一門的概率是0.88.
          (1)依題意分別計算該學(xué)生選修書法、繪畫、雕塑三門校本選修課的概率;
          (2)用ξ表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,求隨機變量ξ的分布列和數(shù)學(xué)期望.

          查看答案和解析>>


          同步練習(xí)冊答案