日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 相交直線和.由線面垂直的判定定理.可得PD⊥平面PBC.-- 查看更多

           

          題目列表(包括答案和解析)

          如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點,且.

          (Ⅰ)求證:CN∥平面AMB1;

          (Ⅱ)求證: B1M⊥平面AMG.

          【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運(yùn)用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明

          第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。

          解:(Ⅰ)設(shè)AB1 的中點為P,連結(jié)NP、MP ………………1分

          ∵CM   ,NP   ,∴CM       NP, …………2分

          ∴CNPM是平行四邊形,∴CN∥MP  …………………………3分

          ∵CN  平面AMB1,MP奐  平面AMB1,∴CN∥平面AMB1…4分

          (Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

              ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

          ∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

          設(shè):AC=2a,則

          …………………………8分

          同理,…………………………………9分

          ∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

          ………………………………10分

           

          查看答案和解析>>

          如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.

          (Ⅰ)求證:平面;

          (Ⅱ)求證:平面;

          (Ⅲ)求二面角的大小.

          【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面,,又,∴平面. 可得證明

          (3)因為∴為面的法向量.∵,

          為平面的法向量.∴利用法向量的夾角公式,

          的夾角為,即二面角的大小為

          方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點、

          ,又點,,∴

          ,且不共線,∴

          平面,平面,∴平面.…………………4分

          (Ⅱ)∵,

          ,,即,

          ,∴平面.   ………8分

          (Ⅲ)∵,∴平面,

          為面的法向量.∵,

          為平面的法向量.∴,

          的夾角為,即二面角的大小為

           

          查看答案和解析>>

          如圖1,在中,,D,E分別為AC,AB的中點,點F為線段CD上的一點,將沿DE折起到的位置,使,如圖2.

          (Ⅰ)求證:DE∥平面

          (Ⅱ)求證:

          (Ⅲ)線段上是否存在點Q,使?說明理由。

          【解析】(1)∵DE∥BC,由線面平行的判定定理得出

          (2)可以先證,得出,∵

          (3)Q為的中點,由上問,易知,取中點P,連接DP和QP,不難證出,,又∵

           

          查看答案和解析>>

          在棱長為的正方體中,是線段的中點,.

          (1) 求證:^

          (2) 求證://平面;

          (3) 求三棱錐的表面積.

          【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問中,利用,得到結(jié)論,第二問中,先判定為平行四邊形,然后,可知結(jié)論成立。

          第三問中,是邊長為的正三角形,其面積為

          因為平面,所以

          所以是直角三角形,其面積為,

          同理的面積為面積為.  所以三棱錐的表面積為.

          解: (1)證明:根據(jù)正方體的性質(zhì),

          因為,

          所以,又,所以,,

          所以^.               ………………4分

          (2)證明:連接,因為,

          所以為平行四邊形,因此,

          由于是線段的中點,所以,      …………6分

          因為,平面,所以∥平面.   ……………8分

          (3)是邊長為的正三角形,其面積為,

          因為平面,所以,

          所以是直角三角形,其面積為,

          同理的面積為,              ……………………10分

          面積為.          所以三棱錐的表面積為

           

          查看答案和解析>>

          平面幾何中,同垂直于一條直線的兩直線________.那么,類比到空間中有:(1)同垂直于一條直線的兩條直線平行,這個命題成立嗎?______.為什么?_______.(2)同垂直于一個平面的兩條直線_________.這個命題是__________(填:真、假)命題.原因是:已知a⊥平面α,b⊥平面α,求證:ab.假設(shè)b不平行于a,設(shè)bα=O,b′是經(jīng)過點O與直線_______平行的直線.∵a_______b′,aα ,?∴b′________α,?即經(jīng)過同一點O的兩條直線________、_______都垂直于平面α,這是不可能的.因此,________.這種證明的方法是________法.?

          命題(2)的逆命題是:如果兩條平行直線中的一條垂直于一個平面,那么另一條也_________這個平面.用數(shù)學(xué)符號表示:已知a_____b,a_______平面α,求證:b______α.?

          證明:設(shè)m是α內(nèi)的任意一條直線.∵a________α,mα,?

          ?∴a________m.又∵a_______b,∴________bm.又∵mα,m是_______,∴由線面垂直的__________可知b______α.

          查看答案和解析>>


          同步練習(xí)冊答案