日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17. 楊輝三角是楊輝的一大重要研究成果.它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān).楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角: (1)求第20行中從左到右的第4個(gè)數(shù),(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為.求n的值,楊輝三角的所有數(shù)的和, (4)在第3斜列中.前5個(gè)數(shù)依次為1.3.6.10.15,第4斜列中.第5個(gè)數(shù)為35.顯然.1+3+6+10+15=35.事實(shí)上.一般地有這樣的結(jié)論: 第m斜列中前k個(gè)數(shù)之和.一定等于第m+1斜列中第k個(gè)數(shù). 試用含有m.k的數(shù)學(xué)公式表示上述結(jié)論.并給予證明. 查看更多

           

          題目列表(包括答案和解析)

          楊輝是我國(guó)南宋著名的數(shù)學(xué)家,“楊輝三角”是楊輝的一大重要研究成果,其中蘊(yùn)含了許多優(yōu)美的規(guī)律(如圖),“楊輝三角”中第14行從左到右第10與第11個(gè)數(shù)的比值為
          2
          2

          查看答案和解析>>

          楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖所示是一個(gè)11階楊輝三角:

          (1)求第20行中從左到右的第4個(gè)數(shù);
          (2)若第n行中從左到右第14與第15個(gè)數(shù)的比為
          23
          ,求n的值;
          (3)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m,k(m,k∈N*)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.

          查看答案和解析>>

          楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家.他的數(shù)學(xué)著作頗多,他編著的數(shù)學(xué)書(shū)共5種21卷,在他的著作中收錄了不少現(xiàn)已失傳的古代數(shù)學(xué)著作中的算題和算法.他的數(shù)學(xué)研究與教育工作的重點(diǎn)是在計(jì)算技術(shù)方面.楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)涵了許多優(yōu)美的規(guī)律.古今中外,許多數(shù)學(xué)家如賈憲、朱世杰、帕斯卡、華羅庚等都曾深入研究過(guò),并將研究結(jié)果應(yīng)用于其他工作.下圖是一個(gè)11階的楊輝三角:

           

          試回答:(其中第(1)&(5)小題只需直接給出最后的結(jié)果,無(wú)需求解過(guò)程)

          (1)記第i(i∈N*)行中從左到右的第j(j∈N*)個(gè)數(shù)為aij,則數(shù)列{aij}的通項(xiàng)公式為          ,

          n階楊輝三角中共有           個(gè)數(shù);

          (2)第k行各數(shù)的和是;

          (3)n階楊輝三角的所有數(shù)的和是;

          (4)將第n行的所有數(shù)按從左到右的順序合并在一起得到的多位數(shù)等于;

          (5)第p(p∈N*,且p≥2)行除去兩端的數(shù)字1以外的所有數(shù)都能被p整除,則整數(shù)p一定為(   )

          A.奇數(shù)                B.質(zhì)數(shù)              C.非偶數(shù)                D.合數(shù)

          (6)在第3斜列中,前5個(gè)數(shù)依次為1、3、6、10、15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:

          m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).

          試用含有m、k(mk∈N*)的數(shù)學(xué)公式表示上述結(jié)論并證明其正確性.

          數(shù)學(xué)公式為                   .

          證明:                        .

          查看答案和解析>>

          楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家. 楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:
          (1)求第20行中從左到右的第4個(gè)數(shù);
          (2)若第n行中從左到右第14與第15個(gè)數(shù)的比為,求n的值;
          (3)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).
          試用含有m、k的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.

          查看答案和解析>>

          楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家. 楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:
          (1)求第20行中從左到右的第4個(gè)數(shù);
          (2)若第n行中從左到右第14與第15個(gè)數(shù)的比為,求n的值;
          (3)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).
          試用含有m、k的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案