題目列表(包括答案和解析)
如圖,在四棱錐中,
⊥底面
,底面
為正方形,
,
,
分別是
,
的中點(diǎn).
(I)求證:平面
;
(II)求證:;
(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.
【解析】第一問利用線面平行的判定定理,,得到
第二問中,利用,所以
又因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921145879762728/SYS201206192116075476939219_ST.files/image018.png">,,從而得
第三問中,借助于等體積法來求解三棱錐B-EFC的體積.
(Ⅰ)證明: 分別是
的中點(diǎn),
,
. …4分
(Ⅱ)證明:四邊形
為正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,
∴
如圖1,在直角梯形中,
,
,
,
. 把
沿對(duì)角線
折起到
的位置,如圖2所示,使得點(diǎn)
在平面
上的正投影
恰好落在線段
上,連接
,點(diǎn)
分別為線段
的中點(diǎn).
(1)求證:平面平面
;
(2)求直線與平面
所成角的正弦值;
(3)在棱上是否存在一點(diǎn)
,使得
到點(diǎn)
四點(diǎn)的距離相等?請(qǐng)說明理由.
如圖1,在直角梯形中,
,
,
,
. 把
沿對(duì)角線
折起到
的位置,如圖2所示,使得點(diǎn)
在平面
上的正投影
恰好落在線段
上,連接
,點(diǎn)
分別為線段
的中點(diǎn).
(I)求證:平面平面
;
(II)求直線與平面
所成角的正弦值;
(III)在棱上是否存在一點(diǎn)
,使得
到點(diǎn)
四點(diǎn)的距離相等?請(qǐng)說明理由.
如圖1,在直角梯形中,
,
,
,
. 把
沿對(duì)角線
折起到
的位置,如圖2所示,使得點(diǎn)
在平面
上的正投影
恰好落在線段
上,連接
,點(diǎn)
分別為線段
的中點(diǎn).
(1)求證:平面平面
;
(2)求直線與平面
所成角的正弦值;
(3)在棱上是否存在一點(diǎn)
,使得
到點(diǎn)
四點(diǎn)的距離相等?請(qǐng)說明理由.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com