日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 等差.等比數(shù)列的重要性質(zhì), 查看更多

           

          題目列表(包括答案和解析)

           下列關(guān)于等差、等比數(shù)列的判斷,正確的是     (    )

              A.若對(duì)任意的都有(常數(shù)),則數(shù)列為等差數(shù)列(

              B.?dāng)?shù)列一定是等差數(shù)列,也一定是等比數(shù)列

              C.若、均為等差數(shù)列,則也是等差數(shù)列     

              D.對(duì)于任意非零實(shí)數(shù),它們的等比中項(xiàng)一定存在且為

           

          查看答案和解析>>

          關(guān)于數(shù)列有下列四個(gè)判斷:
          ①若a,b,c,d成等比數(shù)列,則a+b,b+c,c+d也成等比數(shù)列;
          ②若數(shù)列{an}是等比數(shù)列,則Sn,S2n-Sn,S3n-S2n…也成等比數(shù)列;
          ③若數(shù)列{an}既是等差數(shù)列也是等比數(shù)列,則{an}為常數(shù)列;
          ④數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=an-1(a∈R),則{an}為等差或等比數(shù)列;
          ⑤數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不會(huì)有am=an(m≠n).
          其中正確命題的序號(hào)是
          ②③④⑤
          ②③④⑤
          .(請(qǐng)將正確命題的序號(hào)都填上)

          查看答案和解析>>

          (2011•江西模擬)已知數(shù)列{an},{bn}分別是等差、等比數(shù)列,且a1=b1=1,a2=b2,a4=b3≠b4
          ①求數(shù)列{an},{bn}的通項(xiàng)公式;
          ②設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求{
          1
          Sn
          }的前n項(xiàng)和Tn;
          ③設(shè)Cn=
          anbn
          Sn+1
          (n∈N),Rn=C1+C2+…+Cn,求Rn

          查看答案和解析>>

          8、對(duì)數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N).對(duì)自然數(shù)k,規(guī)定{△kan}為{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
          (1)已知數(shù)列{an}的通項(xiàng)公式an=n2+n(n∈N),,試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
          (2)若數(shù)列{an}首項(xiàng)a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項(xiàng)公式.
          (3)(理)對(duì)(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對(duì)一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項(xiàng)公式;若不存在,則請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          已知等比數(shù)列的公比q>0,a1=
          1
          2
          ,且a1是3a2與2a3的等差中項(xiàng).
          (1)求{an}的通項(xiàng)公式;
          (2)令bn=
          21
          2
          +log2an(n∈N*
          ),記數(shù)列{bn}的前n項(xiàng)和為Sn,當(dāng)n為何值時(shí),Sn取得最大值?

          查看答案和解析>>


          同步練習(xí)冊(cè)答案