日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 例1 (1)已知.求x 解:在上正弦函數(shù)是單調(diào)遞增的.且符合條件的角只有一個 ∴(即) (2)已知 解:.是第一或第二象限角 即() (3)已知 解:x是第三或第四象限角 (即 或 ) 這里用到是奇函數(shù) 例2 (1)已知.求 解:在上余弦函數(shù)是單調(diào)遞減的.且符合條件的角只有一個 (2)已知.且.求x的值 解:.x是第二或第三象限角 (3)已知.求x的值 解:由上題: 介紹:∵ ∴上題 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.

          (1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;

          (2)證明:對任意實數(shù)0<x1<x2<1, 關(guān)于x的方程:

          在(x1,x2)恒有實數(shù)解

          (3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:

          當(dāng)0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)

          查看答案和解析>>

          已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
          (1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
          (2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:數(shù)學(xué)公式在(x1,x2)恒有實數(shù)解
          (3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得數(shù)學(xué)公式.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
          當(dāng)0<a<b時,數(shù)學(xué)公式(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

          查看答案和解析>>

          已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
          (1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
          (2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:在(x1,x2)恒有實數(shù)解
          (3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
          當(dāng)0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

          查看答案和解析>>

          已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
          (1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
          (2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
          f(x2)-f(x1)
          x2-x1
          =0
          在(x1,x2)恒有實數(shù)解
          (3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得f′(x0)=
          f(b)-f(a)
          b-a
          .如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
          當(dāng)0<a<b時,
          b-a
          b
          <ln
          b
          a
          b-a
          a
          (可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

          查看答案和解析>>


          同步練習(xí)冊答案