題目列表(包括答案和解析)
解關(guān)于的不等式
【解析】本試題主要考查了含有參數(shù)的二次不等式的求解,
首先對于二次項系數(shù)a的情況分為三種情況來討論,
A=0,a>0,a<0,然后結(jié)合二次函數(shù)的根的情況和圖像與x軸的位置關(guān)系,得到不等式的解集。
解:①若a=0,則原不等式變?yōu)?2x+2<0即x>1
此時原不等式解集為;
②若a>0,則。時,原不等式的解集為
;
ⅱ)時,原不等式的解集為
;
ⅲ)時,原不等式的解集為
。
③若a<0,則原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911034560884068/SYS201207091104230776185555_ST.files/image013.png">
原不等式的解集為
。
1 | 11 |
(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。對于函數(shù),若存在x0∈R,使
成立,則稱x0為
的不動點。已知函數(shù)
(a≠0)。
(1)當(dāng)時,求函數(shù)
的不動點;
(2)若對任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍;
(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點的橫坐標(biāo)是函數(shù)
的不動點,且A、B兩點關(guān)于點
對稱,求
的的最小值。
(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。
對于函數(shù),若存在x0∈R,使
成立,則稱x0為
的不動點。
已知函數(shù)(a≠0)。
(1)當(dāng)時,求函數(shù)
的不動點;
(2)若對任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍;
(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點的橫坐標(biāo)是函數(shù)
的不動點,且A、B兩點關(guān)于點
對稱,求
的的最小值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com