日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 4.重視“數(shù)形結(jié)合 滲透.“數(shù)缺形時少直觀.形缺數(shù)時難入微 .當(dāng)你所研究的問題較為抽象時.當(dāng)你的思維陷入困境時.當(dāng)你對雜亂無章的條件感到頭緒混亂時.一個很好的建議便是:畫個圖!利用圖形的直觀性.可迅速地破解問題.乃至最終解決問題. 查看更多

           

          題目列表(包括答案和解析)

          (2007•普陀區(qū)一模)現(xiàn)有問題:“對任意x>0,不等式x-a+
          1
          x+a
          >0恒成立,求實數(shù)a的取值范圍.”有兩位同學(xué)用數(shù)形結(jié)合的方法分別提出了自己的解題思路和答案:
          學(xué)生甲:在一個坐標(biāo)系內(nèi)作出函數(shù)f(x)=
          1
          x+a
          和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
          學(xué)生乙:在坐標(biāo)平面內(nèi)作出函數(shù)f(x)=x+a+
          1
          x+a
          的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
          則以下對上述兩位同學(xué)的解題方法和結(jié)論的判斷都正確的是(  )

          查看答案和解析>>

          已知函數(shù)f(x)=|x-1|+|x-2|+…+|x-n|(n∈N*),f(x)的最小值記為an.?dāng)?shù)形結(jié)合可得a1=0,a2=1,…則a3=
           
          ,當(dāng)n是奇數(shù)時,an=
           

          查看答案和解析>>

          (本小題滿分13分)

          已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點。

          (1)求橢圓C的方程;

          (2)是否存在平行于OA的直線,使得直線與橢圓C有公共點,且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

          【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識,考查運算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。

          查看答案和解析>>

          (本小題滿分13分)

          已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點。

          (1)求橢圓C的方程;

          (2)是否存在平行于OA的直線,使得直線與橢圓C有公共點,且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

          【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識,考查運算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。

          查看答案和解析>>

          已知橢圓(a>b>0),點在橢圓上。

          (I)求橢圓的離心率。

          (II)設(shè)A為橢圓的右頂點,O為坐標(biāo)原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

          【考點定位】本小題主要考查橢圓的標(biāo)準方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運算求解能力、綜合分析和解決問題的能力.

           

          查看答案和解析>>


          同步練習(xí)冊答案