日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 3.. 令.即.解得 當(dāng)時(shí)..當(dāng)時(shí).. ∴函數(shù)在點(diǎn)處取得極小值.也是最小值為 即. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

          (Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過怎樣的平移和伸縮變換得到?

          (Ⅱ)若f (θ)=,其中,求cos(θ)的值;

          【解析】第一問中,

          變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

          ②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

          ③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來的2倍,得到函數(shù)的圖象;

          第二問中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而

          進(jìn)而得到結(jié)論。

          (Ⅰ) 解:

          !3

          變換的步驟是:

          ①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;

          ②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象;

          ③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來的2倍,得到函數(shù)的圖象;…………………………………3

          (Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而……2

          (1)當(dāng)時(shí),;…………2

          (2)當(dāng)時(shí);

           

          查看答案和解析>>

          某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻(時(shí)) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且

          (1)令, ,寫出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;

          (2)若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作,求;

          (3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

          【解析】第一問利用定義法求證單調(diào)性,并判定結(jié)論。

          第二問(2)由函數(shù)的單調(diào)性知

          ,即t的取值范圍是. 

          當(dāng)時(shí),記

           

          上單調(diào)遞減,在上單調(diào)遞增,

          第三問因?yàn)楫?dāng)且僅當(dāng)時(shí),.

          故當(dāng)時(shí)不超標(biāo),當(dāng)時(shí)超標(biāo).

           

          查看答案和解析>>

          已知函數(shù)f(x)=alnx-x2+1.

          (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

          (2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

          【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          第二問中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1

          即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來解得。

          (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          (2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

          令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

          ∵g′(x)=-2x+1=(x>0),

          ∴-2x2+x+a≤0在x>0時(shí)恒成立,

          ∴1+8a≤0,a≤-,又a<0,

          ∴a的取值范圍是

           

          查看答案和解析>>

          設(shè)函數(shù)

          (I)求的單調(diào)區(qū)間;

          (II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.

          【解析】第一問定義域?yàn)檎鏀?shù)大于零,得到.                            

          ,則,所以,得到結(jié)論。

          第二問中, ().

          .                          

          因?yàn)?<a<2,所以,.令 可得

          對(duì)參數(shù)討論的得到最值。

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          (I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">.           ………………………1分

          .                            

          ,則,所以.  ……………………3分          

          因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.                            

          ,則,所以

          因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.          ………………………5分

          所以函數(shù)的單調(diào)遞增區(qū)間為

          單調(diào)遞減區(qū)間為.                         ………………………7分

          (II) ().

          .                          

          因?yàn)?<a<2,所以.令 可得.…………9分

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          ①當(dāng),即時(shí),            

          在區(qū)間上,上為減函數(shù),在上為增函數(shù).

          所以.         ………………………10分  

          ②當(dāng),即時(shí),在區(qū)間上為減函數(shù).

          所以.               

          綜上所述,當(dāng)時(shí),

          當(dāng)時(shí),

           

          查看答案和解析>>

          如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花園AMPN,要求B在AM上,D在AN上,且對(duì)角線MN過C點(diǎn),|AB|=3米,|AD|=2米,

          (I)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?

          (II)當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最?并求出最小面積.

          (Ⅲ)若AN的長(zhǎng)度不少于6米,則當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.

          【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力   第一問要利用相似比得到結(jié)論。

          (I)由SAMPN > 32 得 > 32 ,

          ∵x >2,∴,即(3x-8)(x-8)> 0

          ∴2<X<8/3,即AN長(zhǎng)的取值范圍是(2,8/3)或(8,+)

          第二問,  

          當(dāng)且僅當(dāng)

          (3)令

          ∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

          ∴當(dāng)x=6時(shí)y=取得最小值,即SAMPN取得最小值27(平方米).

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案