日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(Ⅰ)由.. ① ∴ . ② ①-②得:.即 . 4分 ∵ . ∴. 8分 (Ⅱ)∵.∴. 10分 ∴ . 故. 14分 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.

          (1)求函數(shù)f(x)的表達式;

          (2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;

          (3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

          【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

          由f(x)=2x只有一解,即=2x,

          也就是2ax2-2(1+b)x=0(a≠0)只有一解,

          ∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

          (2)an+1=f(an)=(n∈N*),bn-1, ∴

          ∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=,

          bn=b1qn-1n-1n(n∈N*).……………………………9分

          (3)證明:∵anbn=an=1-an=1-

          ∴a1b1+a2b2+…+anbn+…+<+…+

          =1-<1(n∈N*).

           

          查看答案和解析>>

          求圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程.

          【解析】利用圓心和半徑表示圓的方程,首先

          設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

          和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

          ∴r=,

          故所求圓的方程為:=2

          解:法一:

          設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

          和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

          ∴r=,                 ………………………10分

          故所求圓的方程為:=2                   ………………………12分

          法二:由條件設(shè)所求圓的方程為: 

           ,          ………………………6分

          解得a=1,b=-2, =2                     ………………………10分

          所求圓的方程為:=2             ………………………12分

          其它方法相應給分

           

          查看答案和解析>>

          (本小題滿分12分)

          閱讀下面內(nèi)容,思考后做兩道小題。

          在一節(jié)數(shù)學課上,老師給出一道題,讓同學們先解,題目是這樣的:

          已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。

          題目給出后,同學們馬上投入緊張的解答中,結(jié)果很快出來了,大家解出的結(jié)果有很多個,下面是其中甲、乙兩個同學的解法:

          甲同學的解法:由f(1)=k+b,f(-1)=-k+b得

          ①+②得:0≤2b≤4,即0≤b≤2               ③

          ② ×(-1)+①得:-1≤k-b≤1             ④

          ④+②得:0≤2k≤4                                               ⑤

          ③+⑤得:0≤2k+b≤6。

          又∵f(2)=2k+b

          ∴0≤f(2)≤6,0≤Z≤6

                乙同學的解法是:由f(1)=k+b,f(-1)=-k+b得

          ①+②得:0≤2b≤4,即:0≤b≤2                        ③

          ①-②得:2≤2k≤2,即:1≤k≤1

          ∴k=1,

          ∵f(2)=2k+b=1+b

          由③得:1≤f(2)≤3

          ∴:1≤Z≤3

          (Ⅰ)如果課堂上老師讓你對甲、乙兩同學的解法給以評價,你如何評價?

          (Ⅱ)請你利用線性規(guī)劃方面的知識,再寫出一種解法。

          查看答案和解析>>

          為了了解已有沙漠面積1000萬公頃的某地區(qū)沙漠面積的變化情況,環(huán)保監(jiān)測部門進入了連續(xù)4年的觀察,并將每年年底的觀察結(jié)果記錄如表甲.根據(jù)這些數(shù)據(jù)還可繪制曲線圖乙.由此預測到該地區(qū)沙漠的面積將繼續(xù)擴大.

          表甲

          圖乙

          (1)如果不采取任何措施,那么到第m年底,該地區(qū)沙漠面積變?yōu)槎嗌俟珒A?

          (2)如果第5年底后,采取引水和植樹造林等措施,使沙漠化擴大趨勢得以減緩.第6年開始的每一年年底觀察得該地區(qū)沙漠面積比上一年增加數(shù)y(公頃)分別為:a6,a7,a8,…,an,而a6,a7,a8,…,an還構(gòu)成首項a6=32,公差d=-8的遞減等差數(shù)列.當沙漠化擴大趨勢停止后(即an=0),每年改造18萬公頃沙漠,那么第n年底,該地區(qū)沙漠的面積能減少到980萬公頃?

          查看答案和解析>>


          同步練習冊答案