日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(Ⅰ)由 知是方程的兩根,注意到得 .--2分 得. 等比數(shù)列.的公比為,--4分 (Ⅱ)--5分 ∵--7分 數(shù)列是首相為3,公差為1的等差數(shù)列. --8分 知數(shù)列是首相為3,公差為1的等差數(shù)列,有 --=-- =--10分 ,整理得,解得.--11分 的最大值是7. --12分 查看更多

           

          題目列表(包括答案和解析)

          已知樣本方差是由公式s2=
          1
          12
          12
          k=1
          (xk-5)2
          求得,則x1+x2+…+x12=
           

          查看答案和解析>>

          已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

          (Ⅰ)若 ,是否存在,有?請說明理由;

          (Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

          (Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.

          【解析】第一問中,由,整理后,可得、為整數(shù)不存在、,使等式成立。

          (2)中當(dāng)時,則

          ,其中是大于等于的整數(shù)

          反之當(dāng)時,其中是大于等于的整數(shù),則,

          顯然,其中

          、滿足的充要條件是,其中是大于等于的整數(shù)

          (3)中設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時,式不成立。由式得,整理

          當(dāng)時,符合題意。當(dāng),為奇數(shù)時,

          結(jié)合二項式定理得到結(jié)論。

          解(1)由,整理后,可得,為整數(shù)不存在,使等式成立。

          (2)當(dāng)時,則,其中是大于等于的整數(shù)反之當(dāng)時,其中是大于等于的整數(shù),則,

          顯然,其中

          、滿足的充要條件是,其中是大于等于的整數(shù)

          (3)設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時,式不成立。由式得,整理

          當(dāng)時,符合題意。當(dāng),為奇數(shù)時,

             由,得

          當(dāng)為奇數(shù)時,此時,一定有使上式一定成立。當(dāng)為奇數(shù)時,命題都成立

           

          查看答案和解析>>

          如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點.

          (1)求圓錐體的體積;

          (2)異面直線所成角的大小(結(jié)果用反三角函數(shù)表示).

          【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

          第一問中,由題意,,故

          從而體積.2中取OB中點H,聯(lián)結(jié)PH,AH.

          由P是SB的中點知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

          中,,PH=1/2SB=2,,

          ,所以異面直線SO與P成角的大arctan

          解:(1)由題意,,

          從而體積.

          (2)如圖2,取OB中點H,聯(lián)結(jié)PH,AH.

          由P是SB的中點知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.

          OAH中,由OAOB得

          中,,PH=1/2SB=2,

          ,所以異面直線SO與P成角的大arctan

           

          查看答案和解析>>

          已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且.

          (Ⅰ)求數(shù)列的通項公式;

          (Ⅱ)記,證明).

          【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

          ,得.

          由條件,得方程組,解得

          所以,.

          (2)證明:(方法一)

          由(1)得

               ①

             ②

          由②-①得

          ,

          (方法二:數(shù)學(xué)歸納法)

          ①  當(dāng)n=1時,,,故等式成立.

          ②  假設(shè)當(dāng)n=k時等式成立,即,則當(dāng)n=k+1時,有:

             

             

          ,因此n=k+1時等式也成立

          由①和②,可知對任意,成立.

           

          查看答案和解析>>

          定義:區(qū)間[mn]、(mn]、[m,n)、(m,n)(n>m)的區(qū)間長度為;若某個不等式的解集由若干個無交集的區(qū)間的并表示,則各區(qū)間的長度之和稱為解集的總長度。已知是偶函數(shù),是奇函數(shù),它們的定義域均為[-3,3],則不等式解集的總長度的取值范圍是_________。

          查看答案和解析>>


          同步練習(xí)冊答案