日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 兩點.問:是否存在.使是以點為直角 查看更多

           

          題目列表(包括答案和解析)

          已知雙曲線的左頂點為A,右焦點為F,過點F作垂直于x軸的直線與雙曲線交于B、C兩點,且AB⊥AC,|BC|=6.
          (1)求雙曲線的方程;
          (2)設(shè)過點F且不垂直于x軸的直線l與雙曲線分別交于點P、Q,請問:是否存在直線l,使△APQ構(gòu)成以A為直角頂點的等腰直角三角形?若存在,求出所有滿足條件的直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          已知圓C:x2+y2=2,坐標(biāo)原點為O.圓C上任意一點A在x軸上的射影為點B,已知向量
          OQ
          =t
          OA
          +(1-t)
          OB
          (t∈R,t≠0)

          (1)求動點Q的軌跡E的方程;
          (2)當(dāng)t=
          2
          2
          時,過點S(0,-
          1
          3
          )的動直線l交軌跡E于A,B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得以AB為直徑的圓恒過T點?若存在,求出點T的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          設(shè)拋物線C:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線交于P1,P2兩點,已知|P1P2|=8.

          (1)求拋物線C的方程;

          (2)設(shè)m>0,過點M(m,0)作方向向量為=(1,)的直線與拋物線C相交于A,B兩點,求使∠AFB為鈍角時實數(shù)m的取值范圍;

          (3)①對給定的定點M(3,0),過M作直線與拋物線C相交于A,B兩點,問是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?若存在,請求出這條直線;若不存在,請說明理由.

          ②對M(m,0)(m>0),過M作直線與拋物線C相交于A,B兩點,問是否存在一條垂直于x軸的直線與以線段AB為直徑的圓始終相切?(只要求寫出結(jié)論,不需用證明)

          查看答案和解析>>

          如圖,在直角坐標(biāo)系xoy中,坐標(biāo)原點O(0,0),以動直線l:y=mx+n(m,n∈R)為軸翻折,使得每次翻折后點O都落在直線y=2上.
          (1)求以(m,n)為坐標(biāo)的點的軌跡G的方程;
          (2)過點E(0,
          54
          )作斜率為k的直線交軌跡G于M,N兩點;(。┊(dāng)+MN|=3時,求M,N兩點的縱坐標(biāo)之和;(ⅱ)問是否存在直線,使△OMN的面積等于某一給定的正常數(shù),說明你的理由.

          查看答案和解析>>

          已知點P是圓O:x2+y2=3上動點,以點P為切點的切線與x軸相交于點Q,直線OP與直線x=1相交于點N,若動點M滿足:
          NM
          OQ
          ,
          QM
          OQ
          =0
          ,記動點M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)若過點F(2,0)的動直線與曲線C相交于不在坐標(biāo)軸上的兩點A,B,設(shè)
          AF
          FB
          ,問在x軸上是否存在定點E,使得
          OF
          ⊥(
          EA
          EB
          )
          ?若存在,求出點E的坐標(biāo),若不存在,說明理由.

          查看答案和解析>>

          一、選擇題

          1、B(A)   2、C        3、A(C)       4、D         5、D          6、C(D)  

          7、B         8、B        9、C          10、B        11、B        12、A(C)

          二、填空題

          13、6          14、           15、31           16、

          三、解答題

          17、解:⑴由

                 由 

                  

                 ∴函數(shù)的最小正周期T= …………………6分

                 ⑵由

                 ∴fx)的單調(diào)遞減區(qū)間是

                 ⑶,∴奇函數(shù)的圖象左移 即得到的圖象,

          故函數(shù)的圖象右移后對應(yīng)的函數(shù)成為奇函數(shù).…………………12分

          18、(文)解:(1),又. ∴,.

          (2)至少需要3秒鐘可同時到達(dá)點.

          到達(dá)點的概率. 到達(dá)點的概率.

               故所求的概率.

          (理)解:(Ⅰ)的概率分布為

          1.2

          1.18

          1.17

          由題設(shè)得,即的概率分布為

          0

          1

          2

          的概率分布為

          1.3

          1.25

          0.2

          所以的數(shù)學(xué)期望

          (Ⅱ)由

          ,∴

           

          19、解:(1)取中點,連結(jié),∵的中點,的中點.

            所以,所以………………………… 2分

          平面,所以平面………………………………………… 4分

          (2)分別在兩底面內(nèi)作,,連結(jié),易得,以為原點,軸,軸,軸建立直角坐標(biāo)系,

          設(shè),則……………………………………………………… 5分

            .

          易求平面的法向量為…………………………………………… 7分

          設(shè)平面的法向量為

          ,由…………… 9分

            ∴…………… 11分

          由題知 ∴

          所以在上存在點,當(dāng)是直二面角.…………… 12分

          20、解:(1)由,得,兩式相減,得,∴,∵是常數(shù),且,,故

          為不為0的常數(shù),∴是等比數(shù)列.

          (2)由,且時,,得

          ,∴是以1為首項,為公差的等差數(shù)列,

          ,故.

          (3)由已知,∴

          相減得:,∴,

          ,遞增,∴,均成立,∴∴,又,∴最大值為7.

          21、(文)解:(Ⅰ)因為

                                

                       又  

                       因此    

                       解方程組得 

                   (Ⅱ)因為     

                       所以     

                       令      

                       因為    

                               

                       所以     在(-2,0)和(1,+)上是單調(diào)遞增的;

                                     在(-,-2)和(0,1)上是單調(diào)遞減的.

                   (Ⅲ)由(Ⅰ)可知         

                      

           

          (理)(1)證:令,令

                      時,.  ∴

                       ∴ 即.

            (2)∵是R上的奇函數(shù)  ∴  ∴

                 ∴  ∴  故.

                 故討論方程的根的個數(shù).

                 即的根的個數(shù).

                 令.注意,方程根的個數(shù)即交點個數(shù).

                  對, ,

                  令, 得,

                   當(dāng)時,; 當(dāng)時,.  ∴,

                   當(dāng)時,;   當(dāng)時,, 但此時

          ,此時以軸為漸近線。

                 ①當(dāng)時,方程無根;

          ②當(dāng)時,方程只有一個根.

          ③當(dāng)時,方程有兩個根.

           (3)由(1)知,   令,

                ∴,于是,

                ∴

                   .

          22、(文)22.解:(1)在中,

          .  (小于的常數(shù))

          故動點的軌跡是以為焦點,實軸長的雙曲線.方程為

          (2)方法一:在中,設(shè),,

          假設(shè)為等腰直角三角形,則

          由②與③得:,

          由⑤得:

          ,

          故存在滿足題設(shè)條件.

          方法二:(1)設(shè)為等腰直角三角形,依題設(shè)可得:

          所以,

          .①

          ,可設(shè),

          ,

          .②

          由①②得.③

          根據(jù)雙曲線定義可得,

          平方得:.④

          由③④消去可解得,

          故存在滿足題設(shè)條件.

           

           

           

           

          (理)解:(1) 

          ,

              于是,所求“果圓”方程為

              .                    

          (2)由題意,得  ,即

                   ,,得.  

               又.  .                                             

          (3)設(shè)“果圓”的方程為,

              記平行弦的斜率為

          當(dāng)時,直線與半橢圓的交點是

          ,與半橢圓的交點是

           的中點滿足  得 .  

                

              綜上所述,當(dāng)時,“果圓”平行弦的中點軌跡總是落在某個橢圓上. 

              當(dāng)時,以為斜率過的直線與半橢圓的交點是.  

          由此,在直線右側(cè),以為斜率的平行弦的中點軌跡在直線上,即不在某一橢圓上.   當(dāng)時,可類似討論得到平行弦中點軌跡不都在某一橢圓上.

           


          同步練習(xí)冊答案