日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ②若.則.即在上恒成立.在上為減函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

          于是對(duì)一切恒成立,當(dāng)且僅當(dāng).        ①

          當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

          故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

          從而

          所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

           

          查看答案和解析>>

          已知函數(shù)f(x)=,為常數(shù)。

          (I)當(dāng)=1時(shí),求f(x)的單調(diào)區(qū)間;

          (II)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求的取值范圍。

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問中,利用當(dāng)a=1時(shí),f(x)=,則f(x)的定義域是然后求導(dǎo),,得到由,得0<x<1;由,得x>1;得到單調(diào)區(qū)間。第二問函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),則在區(qū)間[1,2]上恒成立,即即,或在區(qū)間[1,2]上恒成立,解得a的范圍。

          (1)當(dāng)a=1時(shí),f(x)=,則f(x)的定義域是

          。

          ,得0<x<1;由,得x>1;

          ∴f(x)在(0,1)上是增函數(shù),在(1,上是減函數(shù)!6分

          (2)。若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),

          在區(qū)間[1,2]上恒成立!,或在區(qū)間[1,2]上恒成立。即,或在區(qū)間[1,2]上恒成立。

          又h(x)=在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=,h(x)min=h(1)=3

          ,或。    ∴,或

           

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù)

          (I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

          (II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

          (Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則,

          當(dāng)時(shí),;當(dāng)時(shí),

          在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

          即當(dāng)時(shí),函數(shù)取得極大值.                                       (3分)

          函數(shù)在區(qū)間上存在極值,

           ,解得                                            (4分)

          (2)不等式,即

          (6分)

          ,則,

          ,即上單調(diào)遞增,                          (7分)

          ,從而,故上單調(diào)遞增,       (7分)

                    (8分)

          (3)由(2)知,當(dāng)時(shí),恒成立,即,

          ,則,                               (9分)

                                                                                 (10分)

          以上各式相加得,

          ,

                                     

                                                  (12分)

           

          查看答案和解析>>

          已知函數(shù).(

          (1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

          (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

          【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

          解:(1)在區(qū)間上單調(diào)遞增,

          在區(qū)間上恒成立.  …………3分

          ,而當(dāng)時(shí),,故. …………5分

          所以.                 …………6分

          (2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

          在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

                  …………9分

          ① 若,令,得極值點(diǎn),

          當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

          當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

          ,也不合題意;                     …………11分

          ② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

          要使在此區(qū)間上恒成立,只須滿足,

          由此求得的范圍是.        …………13分

          綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

           

          查看答案和解析>>

          已知函數(shù).

          (Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

          (Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

          【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。

          第二問中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

          解:(1)

          (2)不等式 ,即,即.

          轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

          即不等式上恒成立.

          即不等式上恒成立.

          設(shè),則.

          設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

          在區(qū)間上是減函數(shù)。又

          故存在,使得.

          當(dāng)時(shí),有,當(dāng)時(shí),有.

          從而在區(qū)間上遞增,在區(qū)間上遞減.

          [來源:]

          所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;

          故使命題成立的正整數(shù)m的最大值為5

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案