日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 代入④得即 ---------13分 查看更多

           

          題目列表(包括答案和解析)

          中,是三角形的三內(nèi)角,是三內(nèi)角對(duì)應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

          (Ⅰ)求角的大;

          (Ⅱ)若,求的值.

          【解析】第一問(wèn)中利用依題意,故

          第二問(wèn)中,由題意又由余弦定理知

          ,得到,所以,從而得到結(jié)論。

          (1)依題意,故……………………6分

          (2)由題意又由余弦定理知

          …………………………9分

             故

                     代入

           

          查看答案和解析>>

          如圖,已知直線)與拋物線和圓都相切,的焦點(diǎn).

          (Ⅰ)求的值;

          (Ⅱ)設(shè)上的一動(dòng)點(diǎn),以為切點(diǎn)作拋物線的切線,直線軸于點(diǎn),以、為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;

          (Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為,    直線軸交點(diǎn)為,連接交拋物線兩點(diǎn),求△的面積的取值范圍.

          【解析】第一問(wèn)中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

          ,解得舍去)

          設(shè)與拋物線的相切點(diǎn)為,又,得,.     

          代入直線方程得:,∴    所以,

          第二問(wèn)中,由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

          設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

          ,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線

          第三問(wèn)中,設(shè)直線,代入結(jié)合韋達(dá)定理得到。

          解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

          ,解得舍去).     …………………(2分)

          設(shè)與拋物線的相切點(diǎn)為,又,得.     

          代入直線方程得:,∴    所以,.      ……(2分)

          (Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

          設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

          ,得切線軸的點(diǎn)坐標(biāo)為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)

          (Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

          ,

          的面積范圍是

           

          查看答案和解析>>

          已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為,

          (1)若方程有兩個(gè)相等的根,求的解析式;

          (2)若的最大值為正數(shù),求的取值范圍.

          【解析】第一問(wèn)中利用∵f(x)+2x>0的解集為(1,3),

          設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

          第二問(wèn)中,

          解:(1)∵f(x)+2x>0的解集為(1,3),

             ①

          由方程

                        ②

          ∵方程②有兩個(gè)相等的根,

          ,

          即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

          a=-1/5代入①得:

          (2)由

           

           解得:

          故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是

           

          查看答案和解析>>

          在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

          (Ⅰ)求角B的大。

          (Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

          【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運(yùn)用

          第一問(wèn)中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

          p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

          根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

          ,又由余弦定理=2acosB,所以cosB=,B=

          第二問(wèn)中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

          =2ksinA+-=-+2ksinA+=-+ (k>1).

          而0<A<,sinA∈(0,1],故當(dāng)sin=1時(shí),m·n取最大值為2k-=3,得k=.

           

          查看答案和解析>>

          在△中,∠,∠,∠的對(duì)邊分別是,且 .

          (1)求∠的大;(2)若,,求的值.

          【解析】第一問(wèn)利用余弦定理得到

          第二問(wèn)

          (2)  由條件可得 

          將    代入  得  bc=2

          解得   b=1,c=2  或  b=2,c=1  .

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案