日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)若函數(shù)在上的最大.最小值分別為1..求a.b的值, 查看更多

           

          題目列表(包括答案和解析)

          8、若函數(shù)f(x)=x3-3x-a在區(qū)間[0,3]上的最大值、最小值分別為M、N,則M-N的值為( 。

          查看答案和解析>>

          若函數(shù)f(x)=
          x3+sinx
          x4+cosx+2
          在(-∞,+∞)上的最大值與最小值分別為M與N,則有( 。
          A、M+N=0
          B、M-N=0
          C、MN=0
          D、
          M
          N
          =0

          查看答案和解析>>

          若函數(shù)f(x)=
          2sin(x+
          π
          6
          )+x4+x
          x4+cosx
          +1
          [-
          π
          2
          π
          2
          ]
          上的最大值與最小值分別為M與N,則有( 。
          A、M-N=2
          B、M+N=2
          C、M-N=4
          D、M+N=4

          查看答案和解析>>

          若函數(shù)f(x)=x3-3x-a在區(qū)間[0,3]上的最大值、最小值分別為M、N,則M-N的值為(  )
          A.2B.4C.18D.20

          查看答案和解析>>

          若函數(shù)f(x)=x3-3x-a在區(qū)間[0,3]上的最大值、最小值分別為M、N,則M-N的值為( )
          A.2
          B.4
          C.18
          D.20

          查看答案和解析>>

          一、選擇題:每小題5分,滿分60.

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          B

          C

          A

          A

          A

          A

          B

          D

          D

          B

          C

          C

          二、填空題:每小題5分,滿分20.

          13.

          14. 

          15.

          16.①③④

          三、解答題

          17.設兩個實數(shù)為a,b,,,建立平面直角坐標系aOb, 則點在正方形OABC內(nèi)       ……… 2分

          (Ⅰ) 記事件A“兩數(shù)之和小于1.2”,即,則滿足條件的點在多邊形OAEFC內(nèi)

          所以                                    ……… 6分

          (Ⅱ) 記事件B“兩數(shù)的平方和小于0.25”,則滿足條件的點在扇形內(nèi)

          所以                                                                    ………10分

          18.∵m?n                                ……… 4分

            再由余弦定理得:

          (Ⅰ)由,故                      ……… 8分

          (Ⅱ)由

          解得,所以的取值范圍是         ………12分

          19.(Ⅰ)連接,交,易知中點,故在△中,為邊的中位線,故,平面,平面,所以∥平面            ……… 5分

          (Ⅱ)在平面內(nèi)過點,垂足為H,

          ∵平面⊥平面,且平面∩平面

          ⊥平面,∴,                                 ……… 8分

          又∵,中點,∴

          ⊥平面,∴,又∵,

          ⊥平面.                                                           ………12分

          20.(Ⅰ)∵是各項均為正數(shù)的等差數(shù)列,且公差

           ∴           ……… 3分

          為常數(shù),∴是等差數(shù)列           ……… 5分

          (Ⅱ)∵,∴

          是公差為1的等差數(shù)列                                       ……… 7分

          ,∴       ……… 9分

          時,                                   ………10分

          時,

          綜上,                                                               ………12分

          21.(Ⅰ)                                                                       ……… 4分

          (Ⅱ)由橢圓的對稱性知:PRQS為菱形,原點O到各邊距離相等……… 5分

          ⑴當P在y軸上時,易知R在x軸上,此時PR方程為,

          .                                                       ……… 6分

          ⑵當P在x軸上時,易知R在y軸上,此時PR方程為

          .                                                       ……… 7分

          ⑶當P不在坐標軸上時,設PQ斜率為k,、

          P在橢圓上,.......①;R在橢圓上,......②

          利用Rt△POR可得                               ……… 9分

          即 

          整理得 .                                               ………11分

          再將①②帶入,得

          綜上當時,有.                                       ………12分

          22.(Ⅰ)∵,且,∴

          ∴在上, 變化情況如下表:

          x

           

           

          b

                                                                                                      ……… 2分

          ∵函數(shù)上的最大值為1,

          ,此時應有

                                                                            ……… 4分

          (Ⅱ)                                                                             ……… 6分

          所求切線方程為                                             ……… 8分

          (Ⅲ)                                   ………10分

               

          ∴當時,函數(shù)的無極值點

          時,函數(shù)有兩個極值點                 ………12分

           

           


          同步練習冊答案