日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1) 設(shè)是的中點.求證:∥平面, 查看更多

           

          題目列表(包括答案和解析)

          在平面直角坐標(biāo)系xOy中,已知直線l:2
          2
          x-y+3+8
          2
          =0
          和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
          3

          (1)求圓C1的方程;
          (2)設(shè)圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當(dāng)點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點?請證明你的結(jié)論;
          (3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標(biāo)的范圍.

          查看答案和解析>>

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
          1
          4
          x2.實數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點,A(p0,
          1
          4
          p02)(p0≠0),作L的切線交y軸于點B.證明:對線段AB上的任一點Q(p,q),有φ(p,q)=
          |p0|
          2
          ;
          (2)設(shè)M(a,b)是定點,其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點分別為E(p1,
          1
          4
          p
          2
          1
          ),E′(p2,
          1
          4
          p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點的點集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          |p1|
          2

          (3)設(shè)D={ (x,y)|y≤x-1,y≥
          1
          4
          (x+1)2-
          5
          4
          }.當(dāng)點(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          設(shè)函數(shù)f(x)=ax+
          1x+b
          (a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3.
          (Ⅰ)求f(x)的解析式,并判斷函數(shù)y=f(x)的圖象是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由.
          (II)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
          (III) 將函數(shù)y=f(x)的圖象向左平移一個單位后與拋物線y=ax2(a為非0常數(shù))的圖象有幾個交點?(說明理由)

          查看答案和解析>>

          在平面直角坐標(biāo)系xoy中,已知三點O(0,0),A(-1,1),B(1,1),曲線C上任意-點M(x,y)滿足:|
          MA
          +
          MB
          |=4-
          1
          2
          OM
          •(
          OA
          +
          OB
          )

          (l)求曲線C的方程;
          (2)設(shè)點P是曲線C上的任意一點,過原點的直線L與曲線相交于M,N兩點,若直線PM,PN的斜率都存在,并記為kPM,kPN.試探究kPM•kPN的值是否與點P及直線L有關(guān),并證明你的結(jié)論;
          (3)設(shè)曲線C與y軸交于D、E兩點,點M (0,m)在線段DE上,點P在曲線C上運動.若當(dāng)點P的坐標(biāo)為(0,2)時,|
          MP
          |
          取得最小值,求實數(shù)m的取值范圍.

          查看答案和解析>>

          在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2=4和直線l:2x+y-10=0,點P為圓C上任意一點.
          (1)若直線l'∥l,且l'被圓C截得的弦長為2
          3
          ,求直線l'的方程;
          (2)過點P作圓C的切線,設(shè)此切線交直線l于點T,若PT=
          21
          ,求點T的坐標(biāo);
          (3)已知A(2,2),是否存在定點B(m,n),使得
          PA
          PB
          為定值k(k>1)?請證明你的結(jié)論.

          查看答案和解析>>


          同步練習(xí)冊答案