題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項(xiàng)公式為
,求數(shù)列
的前
項(xiàng)和
;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:
,設(shè)
,
若(2)中的滿足對(duì)任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)
在
軸上,點(diǎn)
在
軸的正半軸,點(diǎn)
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在
軸上移動(dòng)時(shí),求動(dòng)點(diǎn)
的軌跡
方程;
(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時(shí),
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前
項(xiàng)和為
,對(duì)任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列
的前
項(xiàng)和為
,求證:對(duì)任意正整數(shù)
都有
;
(III)設(shè)數(shù)列的前
項(xiàng)和為
。已知正實(shí)數(shù)
滿足:對(duì)任意正整數(shù)
恒成立,求
的最小值。
一.選擇題(每小題5分,共60分)
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
B
D
D
B
D
A
C
C
A
A
二.填空題(每小題4分,共16分)
13. 14.
15.
16.
-
三、解答題:(本大題共6個(gè)小題,共74分.解答應(yīng)寫出文字說明,證明過程或演算步驟).
17、(本小題滿分12分)
解:由得:
(3分)
因?yàn)?sub>所以
所以
(6分)
由正弦定理得. (8分) 從而由余弦定理及
得:
(12分)
18、(本小題滿分12分)
解:(1)∵這支籃球隊(duì)與其他各隊(duì)比賽勝場(chǎng)的事件是相互獨(dú)立的,
∴首次勝場(chǎng)前已負(fù)了兩場(chǎng)的概率P=(1-)×(1-
)×
=
. 4分
(2)設(shè)A表示這支籃球隊(duì)在6場(chǎng)比賽中恰好勝了3場(chǎng)的事件,則P(A)就是6次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生3次的概率.∴P(A)=P6(3)=C(
)3(1-
)3=
.
8分
(3)設(shè)ξ表示這支籃球隊(duì)在6場(chǎng)比賽中勝場(chǎng)數(shù),則ξ~B(6,).
∴Dξ=6××(1-
)=
,Eξ=6×
=2.
故這支籃球隊(duì)在6場(chǎng)比賽中勝場(chǎng)數(shù)的期望是2,方差是.
12分
19、(本小題滿分12分)
解: (4分)
,
( 6分)
當(dāng)時(shí),
當(dāng)
時(shí),
,(9分)
當(dāng)
時(shí),
當(dāng)時(shí),
(11分)
綜上,
所以,
為等差數(shù)列.(12分)
20.(本題?分12分)
解 (1)如圖2,將已知條件實(shí)現(xiàn)在長(zhǎng)方體中,則直線與平面
所成的角為
,ks5u直線
與平面
所成角的為
.在直角
中,有
,故
=
;在直角
中,有
,
故=
. 6分
(2)如圖2,作有
設(shè)二面角的平面角為
,則
得:.
12分
21、(本小題滿分12分)
解:因?yàn)榫段的兩端點(diǎn)在拋物線
上,故可設(shè)
,設(shè)線段
的中點(diǎn)
,則
7分
又,
所以:
11分
所以,線段的中點(diǎn)
的軌跡方程為
. 12分
22、(本小題滿分14分)
(1)解:f′(x)=3x2-6ax+b,
過P1(x1,y1)的切線方程是y-y1=f′(x1)(x-x1)(x1≠0).
又原點(diǎn)在直線上,所以-(x13-3ax12+bx1)=(-x1)(3x12-6ax1+b),
解得x1=. 4分
(2)解:過Pn(xn,yn)的切線方程是y-yn=f′(xn)(x-xn).
又Pn+1 (xn+1,yn+1)在直線上,
所以(xn+1-xn)2(xn+1+2xn-
解得xn+1+2xn-
(3)證明:由(2)得xn+1-a=-2(xn-a),
所以數(shù)列{xn-a}是首項(xiàng)為x1-a=,公比為-2的等比數(shù)列.
∴xn=a+?(-2)n-1,
即xn=[1-(-2)n-2]a.
當(dāng)n為正偶數(shù)時(shí),xn<a;當(dāng)n為正奇數(shù)時(shí), xn>a. 14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com