日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 因此的所有取值為:0.1.2.4.5.8. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)A是如下形式的2行3列的數(shù)表,

          a

          b

          c

          d

          e

          f

          滿足性質(zhì)P:a,b,c,d,e,f,且a+b+c+d+e+f=0

          為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記中的最小值。

          (1)對(duì)如下表A,求的值

          1

          1

          -0.8

          0.1

          -0.3

          -1

          (2)設(shè)數(shù)表A形如

          1

          1

          -1-2d

          d

          d

          -1

          其中,求的最大值

          (3)對(duì)所有滿足性質(zhì)P的2行3列的數(shù)表A,求的最大值。

          【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image007.png">,,所以

          (2),

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821120141938091/SYS201207182112449975134492_ST.files/image006.png">,所以,

          所以

          當(dāng)d=0時(shí),取得最大值1

          (3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)

          a

          b

          c

          d

          e

          f

          任意改變A的行次序或列次序,或把A中的每個(gè)數(shù)換成它的相反數(shù),所得數(shù)表仍滿足性質(zhì)P,并且,因此,不妨設(shè),

          得定義知,,,,

          從而

               

          所以,,由(2)知,存在滿足性質(zhì)P的數(shù)表A使,故的最大值為1

          【考點(diǎn)定位】此題作為壓軸題難度較大,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,考查學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力

           

          查看答案和解析>>

          4. m>2或m<-2 解析:因?yàn)閒(x)=在(-1,1)內(nèi)有零點(diǎn),所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2

          隨機(jī)變量的所有等可能取值為1,2…,n,若,則(    )

          A. n=3        B.n=4          C. n=5        D.不能確定

          5.m=-3,n=2 解析:因?yàn)?img width=127 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/81/253081.gif">的兩零點(diǎn)分別是1與2,所以,即,解得

          6.解析:因?yàn)?img width=95 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/86/253086.gif">只有一個(gè)零點(diǎn),所以方程只有一個(gè)根,因此,所以

          查看答案和解析>>

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

          ,得

          當(dāng)x變化時(shí),,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

          ,得

          ①當(dāng)時(shí),,上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時(shí),,對(duì)于,,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

          當(dāng)時(shí),

                                

                                

          在(2)中取,得

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>

          學(xué)校要用三輛車(chē)從北湖校區(qū)把教師接到文廟校區(qū),已知從北湖校區(qū)到文廟校區(qū)有兩條公路,汽車(chē)走公路①堵車(chē)的概率為,不堵車(chē)的概率為;汽車(chē)走公路②堵車(chē)的概率為,不堵車(chē)的概率為,若甲、乙兩輛汽車(chē)走公路①,丙汽車(chē)由于其他原因走公路②,且三輛車(chē)是否堵車(chē)相互之間沒(méi)有影響。(I)若三輛車(chē)中恰有一輛車(chē)被堵的概率為,求走公路②堵車(chē)的概率;(Ⅱ)在(I)的條件下,求三輛車(chē)中被堵車(chē)輛的個(gè)數(shù)的分布列和數(shù)學(xué)期望。

          【解析】第一問(wèn)中,由已知條件結(jié)合n此獨(dú)立重復(fù)試驗(yàn)的概率公式可知,得

          第二問(wèn)中可能的取值為0,1,2,3  ,       

           , 

          從而得到分布列和期望值

          解:(I)由已知條件得 ,即,則的值為。

           (Ⅱ)可能的取值為0,1,2,3  ,       

           , 

             的分布列為:(1分)

           

          0

          1

          2

          3

           

           

           

           

          所以 

           

          查看答案和解析>>

          設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

          對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

          記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

          (1)   對(duì)如下數(shù)表A,求K(A)的值;

          1

          1

          -0.8

          0.1

          -0.3

          -1

           

          (2)設(shè)數(shù)表A∈S(2,3)形如

          1

          1

          c

          a

          b

          -1

           

          求K(A)的最大值;

          (3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。

          【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

          所以

          (2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

          于是,,

              

          所以,當(dāng),且時(shí),取得最大值1。

          (3)對(duì)于給定的正整數(shù)t,任給數(shù)表如下,

          任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表

          ,并且,因此,不妨設(shè),

          。

          得定義知,,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

          所以

               

               

          所以,

          對(duì)數(shù)表

          1

          1

          1

          -1

          -1

           

          ,

          綜上,對(duì)于所有的,的最大值為

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案