日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:由0<θ<得tanθ>0. 查看更多

           

          題目列表(包括答案和解析)

          仔細閱讀下面問題的解法:
          設A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          解:由已知可得  a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學習以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設g(x)=
          10-x
          10+x
          x∈A,試判斷g(x)的單調性;(不證)
          (3)又若B={x|
          10-x
          10+x
          >2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>

          仔細閱讀下面問題的解法:

              設A=[0, 1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍。

              解:由已知可得  a 21-x

                  令f(x)= 21-x ,∵不等式a <21-x在A上有解,

                  ∴a <f(x)在A上的最大值.

                  又f(x)在[0,1]上單調遞減,f(x)max =f(0)=2.  ∴實數(shù)a的取值范圍為a<2.

          研究學習以上問題的解法,請解決下面的問題:

          (1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;

          (2)對于(1)中的A,設g(x)=,x∈A,試判斷g(x)的單調性(寫明理由,不必證明);

          (3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數(shù)a的取值范圍。

          查看答案和解析>>

          仔細閱讀下面問題的解法:
          設A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          解:由已知可得 a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學習以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設g(x)=數(shù)學公式x∈A,試判斷g(x)的單調性;(不證)
          (3)又若B={x|數(shù)學公式>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>

          已知數(shù)列是首項為的等比數(shù)列,且滿足.

          (1)   求常數(shù)的值和數(shù)列的通項公式;

          (2)   若抽去數(shù)列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數(shù)列,試寫出數(shù)列的通項公式;

          (3) 在(2)的條件下,設數(shù)列的前項和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請說明理由.

          【解析】第一問中解:由,,

          又因為存在常數(shù)p使得數(shù)列為等比數(shù)列,

          ,所以p=1

          故數(shù)列為首項是2,公比為2的等比數(shù)列,即.

          此時也滿足,則所求常數(shù)的值為1且

          第二問中,解:由等比數(shù)列的性質得:

          (i)當時,;

          (ii) 當時,

          所以

          第三問假設存在正整數(shù)n滿足條件,則,

          則(i)當時,

           

          查看答案和解析>>

          ,,為常數(shù),離心率為的雙曲線上的動點到兩焦點的距離之和的最小值為,拋物線的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負常數(shù))上任意一點向拋物線引兩條切線,切點分別為、,坐標原點恒在以為直徑的圓內,求實數(shù)的取值范圍。

          【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

          第二問中,,

          故直線的方程為,即

          所以,同理可得:

          借助于根與系數(shù)的關系得到即,是方程的兩個不同的根,所以

          由已知易得,即

          解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

          (Ⅱ)設,

          故直線的方程為,即

          所以,同理可得:

          ,是方程的兩個不同的根,所以

          由已知易得,即

           

          查看答案和解析>>


          同步練習冊答案