日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∴argz1=π(Ⅱ)解法一:|z|=1.∴設(shè)z=cosθ+isinθ|z-z1|=|cosθ+isinθ-2+2i| 查看更多

           

          題目列表(包括答案和解析)

          已知復(fù)數(shù)Z滿足|Z+2|-|Z-2|=1,則復(fù)數(shù)Z的對應(yīng)點在復(fù)平面上的集合是


          1. A.
            線段
          2. B.
            橢圓
          3. C.
            雙曲線
          4. D.
            雙曲線的一支

          查看答案和解析>>

          22.規(guī)定C,其中xR,m是正整數(shù),且

          Equation.3=1,這是組合數(shù)Equation.3n、m是正整數(shù),且mn)的一種推廣.

          (1)求C的值;

          (2)組合數(shù)的兩個性質(zhì);

          Equation.3=C. ②Equation.3+C=C.

          是否都能推廣到Equation.3xR,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.

          (3)已知組知數(shù)Equation.3是正整數(shù),證明:當(dāng)xZm是正整數(shù)時,Equation.3Z

           

          查看答案和解析>>

          已知直三棱柱中, , , 的交點, 若.

          (1)求的長;  (2)求點到平面的距離;

          (3)求二面角的平面角的正弦值的大小.

          【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACCA為正方形, AC=3

          第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

          解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

          (2)在面BBCC內(nèi)作CDBC, 則CD就是點C平面ABC的距離CD= … 8分

          (3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

          CHE為二面角C-AB-C的平面角. ………  9分

          sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

          解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

          =(2, -, -), =(0, -3, -h(huán))  ……… 4分

          ·=0,  h=3

          (2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

          點A到平面ABC的距離為H=||=……… 8分

          (3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

          二面角C-AB-C的大小滿足cos== ………  11分

          二面角C-AB-C的平面角的正弦大小為

           

          查看答案和解析>>

          (本小題滿分12分)

          閱讀下面內(nèi)容,思考后做兩道小題。

          在一節(jié)數(shù)學(xué)課上,老師給出一道題,讓同學(xué)們先解,題目是這樣的:

          已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。

          題目給出后,同學(xué)們馬上投入緊張的解答中,結(jié)果很快出來了,大家解出的結(jié)果有很多個,下面是其中甲、乙兩個同學(xué)的解法:

          甲同學(xué)的解法:由f(1)=k+b,f(-1)=-k+b得

          ①+②得:0≤2b≤4,即0≤b≤2               ③

          ② ×(-1)+①得:-1≤k-b≤1             ④

          ④+②得:0≤2k≤4                                               ⑤

          ③+⑤得:0≤2k+b≤6。

          又∵f(2)=2k+b

          ∴0≤f(2)≤6,0≤Z≤6

                乙同學(xué)的解法是:由f(1)=k+b,f(-1)=-k+b得

          ①+②得:0≤2b≤4,即:0≤b≤2                        ③

          ①-②得:2≤2k≤2,即:1≤k≤1

          ∴k=1,

          ∵f(2)=2k+b=1+b

          由③得:1≤f(2)≤3

          ∴:1≤Z≤3

          (Ⅰ)如果課堂上老師讓你對甲、乙兩同學(xué)的解法給以評價,你如何評價?

          (Ⅱ)請你利用線性規(guī)劃方面的知識,再寫出一種解法。

          查看答案和解析>>

          到一定點(1,0,0)的距離小于或等于1的點的集合為


          1. A.
            {(x,y,z)|(x-1)2+y2+z2≤1}
          2. B.
            {(x,y,z)|(x-1)2+y2+z2=1}
          3. C.
            {(x,y,z)|(x-1)2+y2+z2>1}
          4. D.
            {(x,y,z)|x2+y2+z2≤1}

          查看答案和解析>>


          同步練習(xí)冊答案