日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解析:由已知.故z=2+i. 查看更多

           

          題目列表(包括答案和解析)

          已知復數(shù)滿足(z-2)i=1+i(i為虛數(shù)單位),則z的模為(    )。

          查看答案和解析>>

          如圖,在三棱柱中,側(cè)面,為棱上異于的一點,,已知,求:

          (Ⅰ)異面直線的距離;

          (Ⅱ)二面角的平面角的正切值.

          【解析】第一問中,利用建立空間直角坐標系

          解:(I)以B為原點,、分別為Y,Z軸建立空間直角坐標系.由于,

          在三棱柱中有

          ,

          設(shè)

          側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.

          (II)由已知有故二面角的平面角的大小為向量的夾角.

           

          查看答案和解析>>

          已知函數(shù)f(x)=alnx-x2+1.

          (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

          (2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

          【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

          即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導數(shù)的知識來解得。

          (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          (2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

          ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

          令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

          ∵g′(x)=-2x+1=(x>0),

          ∴-2x2+x+a≤0在x>0時恒成立,

          ∴1+8a≤0,a≤-,又a<0,

          ∴a的取值范圍是

           

          查看答案和解析>>

          已知曲線的參數(shù)方程是是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線:的極坐標方程是=2,正方形ABCD的頂點都在上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,).

          (Ⅰ)求點A,B,C,D的直角坐標;

           (Ⅱ)設(shè)P為上任意一點,求的取值范圍.

          【命題意圖】本題考查了參數(shù)方程與極坐標,是容易題型.

          【解析】(Ⅰ)由已知可得,

          ,

          即A(1,),B(-,1),C(―1,―),D(,-1),

          (Ⅱ)設(shè),令=,

          ==,

          ,∴的取值范圍是[32,52]

           

          查看答案和解析>>

          若(x-i)i=y+2i,x,y∈R,則復數(shù)xyi=________.

          解析:由已知得:1+xi=y+2i,∴x=2,y=1,∴xyi=2+i.

          查看答案和解析>>


          同步練習冊答案