日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)t≥時.對于任何≤t1≤t2.有S(t1)-S(t2)=(t1-t2)(1-). 查看更多

           

          題目列表(包括答案和解析)

          當(dāng)p1,p2,…,pn均為正數(shù)時,稱
          n
          p1+p2+…+pn
          為p1,p2,…,pn的“均倒數(shù)”.已知數(shù)列{an}的各項均為正數(shù),且其前n項的“均倒數(shù)”為
          1
          2n+1

          (Ⅰ)試求數(shù)列{an}的通項公式;
          (Ⅱ)設(shè)cn=
          an
          2n+1
          ,試判斷并說明cn+1-cn(n∈N*)的符號;
          (Ⅲ)已知bn=tan(t>0),記數(shù)列{bn}的前n項和為Sn,試求
          Sn+1
          Sn
          的值;
          (Ⅳ)設(shè)函數(shù)f(x)=-x2+4x-
          an
          2n+1
          ,是否存在最大的實數(shù)λ,使當(dāng)x≤λ時,對于一切正整數(shù)n,都有f(x)≤0恒成立?

          查看答案和解析>>

          當(dāng)p1,p2,…,pn均為正數(shù)時,稱
          n
          p1+p2+…+pn
          為p1,p2,…,pn的“均倒數(shù)”.已知數(shù)列{an}的各項均為正數(shù),且其前n項的“均倒數(shù)”為
          1
          2n+1

          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)cn=
          an
          2n+1
          (n∈N*),試比較cn+1與cn的大;
          (3)設(shè)函數(shù)f(x)=-x2+4x-
          an
          2n+1
          ,是否存在最大的實數(shù)λ,使當(dāng)x≤λ時,對于一切正整數(shù)n,都有f(x)≤0恒成立?

          查看答案和解析>>

          已知函數(shù)f(x)=ax2+bx+c,(a,b,c∈R且a≠0)
          (1)當(dāng)x=1時有最大值1,若x∈[m,n],(0<m<n)時,函數(shù)f(x)的值域為[
          1
          n
          ,
          1
          m
          ]
          ,證明:
          f(m)
          f(n)
          =
          n
          m

          (2)若b=4,c=-2時,對于給定正實數(shù)a有一個最小負(fù)數(shù)g(a),使得x∈[g(a),0]時,|f(x)|≤4恒成立,問a為何值時,g(a)最小,并求出這個最小值.

          查看答案和解析>>

          (2013•汕頭二模)已知動點(diǎn)P(x,y)與兩個定點(diǎn)M(-1,0),N(1,0)的連線的斜率之積等于常數(shù)λ(λ≠0)
          (1)求動點(diǎn)P的軌跡C的方程;
          (2)試根據(jù)λ的取值情況討論軌跡C的形狀;
          (3)當(dāng)λ=2時,對于平面上的定點(diǎn)E(-
          3
          ,0),F(xiàn)(
          3
          ,0)
          ,試探究軌跡C上是否存在點(diǎn)P,使得∠EPF=120°,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          已知數(shù)列{an}的前n項的平均數(shù)的倒數(shù)為
          1
          2n+1
          ,
          (1)求{an}的通項公式;
          (2)設(shè)cn=
          an
          2n+1
          ,試判斷并說明cn+1-cn(n∈N*)的符號;
          (3)設(shè)函數(shù)f(x)=-x2+4x-
          an
          2n+1
          ,是否存在最大的實數(shù)λ,當(dāng)x≤λ時,對于一切自然數(shù)n,都有f(x)≤0.

          查看答案和解析>>


          同步練習(xí)冊答案