日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)解法一:不等式f(x)≤1.即≤1+ax. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

          于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

          故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng)

          從而,

          所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

           

          查看答案和解析>>

          (理科做)
          閱讀下面題目的解法,再根據(jù)要求解決后面的問(wèn)題.
          閱讀題目:對(duì)于任意實(shí)數(shù)a1,a2,b1,b2,證明不等式(a1b1+a2b22≤(a12+a22)(b12+b22).
          證明:構(gòu)造函數(shù)f(x)=(a1x+b12+(a2x+b22=(a12+a22)x2+2(a1b1+a2b2)x+(b12+b22).
          注意到f(x)≥0,所以△=[2(a1b1+a2b2)]2-4(a12+a22)(b12+b22)≤0,
          即(a1b1+a2b22≤(a12+a22)(b12+b22).
          (其中等號(hào)成立當(dāng)且僅當(dāng)a1x+b1=a2x+b2=0,即a1b2=a2b1.)
          問(wèn)題:(1)請(qǐng)用這個(gè)不等式證明:對(duì)任意正實(shí)數(shù)a,b,x,y,不等式數(shù)學(xué)公式成立.
          (2)用(1)中的不等式求函數(shù)數(shù)學(xué)公式的最小值,并指出此時(shí)x的值.
          (3)根據(jù)閱讀題目的證明,將不等式(a1b1+a2b22≤(a12+a22)(b12+b22)進(jìn)行推廣,得到一個(gè)更一般的不等式,并用構(gòu)造函數(shù)的方法對(duì)你的推廣進(jìn)行證明.

          查看答案和解析>>

          (理科做)
          閱讀下面題目的解法,再根據(jù)要求解決后面的問(wèn)題.
          閱讀題目:對(duì)于任意實(shí)數(shù)a1,a2,b1,b2,證明不等式(a1b1+a2b22≤(a12+a22)(b12+b22).
          證明:構(gòu)造函數(shù)f(x)=(a1x+b12+(a2x+b22=(a12+a22)x2+2(a1b1+a2b2)x+(b12+b22).
          注意到f(x)≥0,所以△=[2(a1b1+a2b2)]2-4(a12+a22)(b12+b22)≤0,
          即(a1b1+a2b22≤(a12+a22)(b12+b22).
          (其中等號(hào)成立當(dāng)且僅當(dāng)a1x+b1=a2x+b2=0,即a1b2=a2b1.)
          問(wèn)題:(1)請(qǐng)用這個(gè)不等式證明:對(duì)任意正實(shí)數(shù)a,b,x,y,不等式
          a2
          x
          +
          b2
          y
          (a+b)2
          x+y
          成立.
          (2)用(1)中的不等式求函數(shù)y=
          2
          x
          +
          9
          1-2x
          (0<x<
          1
          2
          )
          的最小值,并指出此時(shí)x的值.
          (3)根據(jù)閱讀題目的證明,將不等式(a1b1+a2b22≤(a12+a22)(b12+b22)進(jìn)行推廣,得到一個(gè)更一般的不等式,并用構(gòu)造函數(shù)的方法對(duì)你的推廣進(jìn)行證明.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案