日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)若.求b的值. 查看更多

           

          題目列表(包括答案和解析)

          (Ⅰ)已知矩陣M=
          2
          3
          -
          1
          3
          1
          3
          1
          3
          ,△ABC的頂點(diǎn)為A(0,0),B(2,0),C(1,2),求△ABC在矩陣M-1的變換作用下所得△A′B′C′的面積.
          (Ⅱ)極坐標(biāo)的極點(diǎn)是直角坐標(biāo)系原點(diǎn),極軸為X軸正半軸,直線l的參數(shù)方程為
          x=x0+
          1
          2
          t
          y=
          3
          2
          t

          (t為參數(shù)).⊙O的極坐標(biāo)方程為ρ=2,若直線l與⊙O相切,求實(shí)數(shù)x0的值.
          (Ⅲ)已知a,b,c∈R+,且
          1
          a
          +
          2
          b
          +
          3
          c
          =2
          ,求a+2b+3c的最小值及取得最小值時(shí)a,b,c的值.

          查看答案和解析>>

          (Ⅰ)已知圓O:x2+y2=4和點(diǎn)M(1,a),若實(shí)數(shù)a>0且過點(diǎn)M有且只有一 條直線與圓O相切,求實(shí)數(shù)a的值,并求出切線方程;
          (Ⅱ)過點(diǎn)(
          2
          ,0)引直線l與曲線y=
          1-x2
          相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取得最大值時(shí),求直線l的方程.

          查看答案和解析>>

          (Ⅰ)求極坐標(biāo)方程ρsin2θ-2•cosθ=0表示的曲線的焦點(diǎn)坐標(biāo);
          (Ⅱ)設(shè)直線l:
          x=2+3t
          y=3+4t
          (t為參數(shù))與題(Ⅰ)中的曲線交于A、B兩點(diǎn),若P(2,3),求|PA|•|PB|的值.

          查看答案和解析>>

          (Ⅰ)如圖1,A,B,C是平面內(nèi)的三個(gè)點(diǎn),且A與B不重合,P是平面內(nèi)任意一點(diǎn),若點(diǎn)C在直線AB上,試證明:存在實(shí)數(shù)λ,使得:
          PC
          PA
          +(1-λ)
          PB

          (Ⅱ)如圖2,設(shè)G為△ABC的重心,PQ過G點(diǎn)且與AB、AC(或其延長線)分別交于P,Q點(diǎn),若
          AP
          =m
          AB
          ,
          AQ
          =n
          AC
          ,試探究:
          1
          m
          +
          1
          n
          的值是否為定值,若為定值,求出這個(gè)定值;若不是定值,請(qǐng)說明理由.

          查看答案和解析>>

          精英家教網(wǎng)(Ⅰ)如圖,正方形OABC在二階矩陣M對(duì)應(yīng)的切變變換作用下變?yōu)槠叫兴倪呅蜲A′B′C′,平行四邊形OA'B'C'在二階矩陣N對(duì)應(yīng)的旋轉(zhuǎn)變換作用下變?yōu)槠叫兴倪呅蜲A''B''C'',求將正方形OABC變?yōu)槠叫兴倪呅蜲A''B''C''的變換對(duì)應(yīng)的矩陣.
          (Ⅱ)在直角坐標(biāo)系xOy中,圓O的參數(shù)方程為
          x=-
          2
          2
          +rcosθ
          y=-
          2
          2
          +rsinθ
          (θ為參數(shù),r>0).以O(shè)為極點(diǎn),x軸正半軸為極軸,并取相同的單位長度建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
          π
          4
          )=
          2
          2
          .寫出圓心的極標(biāo),并求當(dāng)r為何值時(shí),圓O上的點(diǎn)到直線l的最大距離為3.
          (Ⅲ)已知a2+2b2+3c2=6,若存在實(shí)數(shù)a,b,c,使得不等式a+2b+3c>|x+1|成立,求實(shí)數(shù)x的取值范圍.

          查看答案和解析>>

          一、選擇題(每小題5分,共60分)

          1.D  2.A   3.D   4.D   5.A   6.C   7.B   8.B   9.C   10.A    11.C    12.B

           

          二、填空題(每小題5分,共20分)

          13.2   14.   15.   16.③④

           

          三、解答題(共70分)

          17.(本小題滿分10分)

          解:(Ⅰ)由  可得:

               又   

           .                                  --------------------------------5分

          (Ⅱ),

              

          .                                    ---------------------------------10分

           

          18.(本小題滿分12分)

          解: 設(shè)A隊(duì)得分為2分的事件為,

          (Ⅰ)∴.             ------------------4分

          (Ⅱ)設(shè)A隊(duì)得分不少于2分的事件為M B隊(duì)得分不多于2分的事件為N,

          由(Ⅰ)得A隊(duì)得分為2分的事件為, A隊(duì)得分為3分的事件為

          B隊(duì)得分為3分的事件為,

                   -   ----------------- 9分

            .                    ------------------ 12分

           

          19.(本小題滿分12分)

          解法一、

          (Ⅰ)連結(jié)于點(diǎn)O,

          平面,平面∩平面

          又∵的中點(diǎn)

          的中點(diǎn). ------------------6分

          (Ⅱ)作 ,垂足為,連結(jié)

               

          平面

                ∴在平面上的射影

                ∴

                ∴是二面角的平面角

          ,

          在直角三角形中,

          ,

          二面角的大小為.   ------------------12分

          解法二、

          (Ⅰ)建立如圖所示空間坐標(biāo)系

          ,

          平面的法向量為

          ,

          平面 ,

          .

          所以點(diǎn)是棱的中點(diǎn).

          (Ⅱ)平面的法向量,設(shè)平面的法向量為. 則

          二面角的大小為.

           

          20.(本小題滿分12分)

          解:(Ⅰ)由得:,所以等差數(shù)列的通項(xiàng)公式為

            .  ------------------------4分

          (Ⅱ)由得:

          從而

          故數(shù)列是單調(diào)遞增的數(shù)列,又因中的最小項(xiàng),要使恒成立,

          則只需 成立即可,由此解得,由于,

          故適合條件的的最大值為1.  ------------------------12分

           

          21.(本小題滿分12分)

          解:(Ⅰ), 是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,

          所以函數(shù)圖象的對(duì)稱中心即為.                         -----------------2分

          ,其圖象頂點(diǎn)坐標(biāo)為

          所以函數(shù)圖象的對(duì)稱中心與導(dǎo)函數(shù)圖象的頂點(diǎn)橫坐標(biāo)相同. -----------------4分

          (Ⅱ)令.

          當(dāng)變化時(shí),變化情況如下表:

          0

          0

          極大值

          極小值

                                                                      

          時(shí),有極大值2,

          ,曲線在點(diǎn)處的切線的斜率.

          直線的方程為                                   -----------------6分

          曲線在點(diǎn)處的切線的斜率.

          直線的方程為

          又曲線在點(diǎn)處的切線的斜率.

          直線的方程為.

          聯(lián)立直線的方程與直線的方程, ,解得,

          .-----------------10分 

          聯(lián)立直線的方程與直線的方程, ,解得,

          .

          ,

          所以. -----------------12分

          圖象如右:

           

           

           

           

           

           

           

          22.(本小題滿分12分)

          解:(Ⅰ)過點(diǎn)垂直直線于點(diǎn)

          依題意得:

          所以動(dòng)點(diǎn)的軌跡為是以為焦點(diǎn),直線為準(zhǔn)線的拋物線, 

          即曲線的方程是                      ---------------------4分

          (Ⅱ)解法一:設(shè)、,則

          知,, ∴,

          又∵切線AQ的方程為:,注意到

          切線AQ的方程可化為:,

          在切線AQ上, ∴

          所以點(diǎn)在直線上;

          同理,由切線BQ的方程可得:.

          所以點(diǎn)在直線上;

          可知,直線AB的方程為:,

          即直線AB的方程為:

          ∴直線AB必過定點(diǎn).     ------------------------12分

           

          (Ⅱ)解法二:設(shè),切點(diǎn)的坐標(biāo)為,則

          知,,得切線方程:.

          即為:,又∵在切線上,

          所以可得:,解之得:.

          所以切點(diǎn),

          .

          故直線AB的方程為:

          化簡得:

          即直線AB的方程為:

          ∴直線AB必過定點(diǎn).

           


          同步練習(xí)冊(cè)答案