日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解法二:可代入特殊值如.即可解得D答案. 查看更多

           

          題目列表(包括答案和解析)

          已知函數 R).

          (Ⅰ)若 ,求曲線  在點  處的的切線方程;

          (Ⅱ)若  對任意  恒成立,求實數a的取值范圍.

          【解析】本試題主要考查了導數在研究函數中的運用。

          第一問中,利用當時,

          因為切點為(), 則,                 

          所以在點()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當時,

          ,                                  

          因為切點為(), 則,                  

          所以在點()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因為,所以恒成立,

          上單調遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當時,上恒成立,

          上單調遞增,

          .                  ……10分

          (2)當時,令,對稱軸,

          上單調遞增,又    

          ① 當,即時,上恒成立,

          所以單調遞增,

          ,不合題意,舍去  

          ②當時,, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>

          對于解方程x2-2x-3=0的下列步驟:

          ①設f(x)=x2-2x-3

          ②計算方程的判別式Δ=22+4×3=16>0

          ③作f(x)的圖象

          ④將a=1,b=-2,c=-3代入求根公式

          x=,得x1=3,x2=-1.

          其中可作為解方程的算法的有效步驟為(  )

          A.①②                            B.②③

          C.②④                D.③④

           

          查看答案和解析>>

          已知遞增等差數列滿足:,且成等比數列.

          (1)求數列的通項公式

          (2)若不等式對任意恒成立,試猜想出實數的最小值,并證明.

          【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為,

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設數列公差為,由題意可知,即

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于

          時,;當時,;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數學歸納法.

          時,,成立.

          假設當時,不等式成立,

          時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調性證明.

          要證 

          只要證  ,  

          設數列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數列為單調遞減數列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          的展開式中的系數為____________.

          【解析】二項展開式的通項為,令,解得,所以,所以的系數為7.

           

          查看答案和解析>>

          已知函數y=x²-3x+c的圖像與x恰有兩個公共點,則c=

          (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

          【解析】若函數的圖象與軸恰有兩個公共點,則說明函數的兩個極值中有一個為0,函數的導數為,令,解得,可知當極大值為,極小值為.由,解得,由,解得,所以,選A.

           

          查看答案和解析>>


          同步練習冊答案