日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (II)若的圖象有兩個不同的交點.求c的值. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=lnx,g(x)=(m+1)x2-x(m≠-1).
          (I)若函數(shù)y=f(x)與y=g(x)的圖象在公共點P處有相同的切線,求實數(shù)m的值和P的坐標(biāo);
          (II)若函數(shù)y=f(x)與y=g(x)的圖象有兩個不同的交點M、N,求實數(shù)m的取值范圍;
          (III)在(II)的條件下,過線段MN的中點作x軸的垂線分別與f(x)的圖象和g(x)的圖象交于S、T點,以S點為切點
          作f(x)的切線l1,以T為切點作g(x)的切線l2,是否存在實數(shù)m,使得l1∥l2?如果存在,求出m的值;如果不存在,請說明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=lnx,g(x)=(m+1)x2-x(m≠-1).
          (I)若函數(shù)y=f(x)與y=g(x)的圖象在公共點P處有相同的切線,求實數(shù)m的值和P的坐標(biāo);
          (II)若函數(shù)y=f(x)與y=g(x)的圖象有兩個不同的交點M、N,求實數(shù)m的取值范圍;
          (III)在(II)的條件下,過線段MN的中點作x軸的垂線分別與f(x)的圖象和g(x)的圖象交于S、T點,以S點為切點
          作f(x)的切線l1,以T為切點作g(x)的切線l2,是否存在實數(shù)m,使得l1∥l2?如果存在,求出m的值;如果不存在,請說明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=lnx,g(x)=(m+1)x2-x(m≠-1).
          (I)若函數(shù)y=f(x)與y=g(x)的圖象在公共點P處有相同的切線,求實數(shù)m的值和P的坐標(biāo);
          (II)若函數(shù)y=f(x)與y=g(x)的圖象有兩個不同的交點M、N,求實數(shù)m的取值范圍;
          (III)在(II)的條件下,過線段MN的中點作x軸的垂線分別與f(x)的圖象和g(x)的圖象交于S、T點,以S點為切點
          作f(x)的切線l1,以T為切點作g(x)的切線l2,是否存在實數(shù)m,使得l1l2?如果存在,求出m的值;如果不存在,請說明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=lnx,g(x)=(m+1)x2﹣x(m≠﹣1).
          (I)若函數(shù)y=f(x)與y=g(x)的圖象在公共點P處有相同的切線,求實數(shù)m的值和P的坐標(biāo);
          (II)若函數(shù)y=f(x)與y=g(x)的圖象有兩個不同的交點M、N,求實數(shù)m的取值范圍;
          (III)在(II)的條件下,過線段MN的中點作x軸的垂線分別與f(x)的圖象和g(x)的圖象交于S、T點,以S點為切點作f(x)的切線l1,以T為切點作g(x)的切線l2,是否存在實數(shù)m,使得l1l2?如果存在,求出m的值;如果不存在,請說明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=lnx,g(x)=(m+1)x2-x(m≠-1).
          (I)若函數(shù)y=f(x)與y=g(x)的圖象在公共點P處有相同的切線,求實數(shù)m的值和P的坐標(biāo);
          (II)若函數(shù)y=f(x)與y=g(x)的圖象有兩個不同的交點M、N,求實數(shù)m的取值范圍;
          (III)在(II)的條件下,過線段MN的中點作x軸的垂線分別與f(x)的圖象和g(x)的圖象交于S、T點,以S點為切點
          作f(x)的切線l1,以T為切點作g(x)的切線l2,是否存在實數(shù)m,使得l1∥l2?如果存在,求出m的值;如果不存在,請說明理由.

          查看答案和解析>>

           

          一、選擇題(本大題共10小題,每小題5分,共50分)

          1―5 ABCDC    6―10 CDBAB

          二、填空題(本大題共7小題,每小題4分,共28分)

          11.    12.    13.10    14.    15.1    16.50    17.―1

          三、解答題(本大題共5小題,共72分。解答應(yīng)寫出文字說明、證明過程或演算過程)

          18.(本小題滿分14分)

          解:(I)    ………………3分

            ………………5分

             ………………8分

             (II)由(I)可得 …………14分

          19.(本小題滿分14分)

          解:(I)由從而

             (II)

            ………………11分

             ………………14分

          20.(本小題滿分14分)

          解:(1)在D1B1上取點M,使D1M=1,

          連接MB,MF。 ………………1分

          ∵D1F=1,D1M=1,

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          ∵BE//B1C1,BE=1,

          ∴MF//BE,且MF=BE

          ∴四邊形FMBE是平行四邊形!5分

          ∴EF//BM,

          又EF平面B1D1DB,

          BM平面B1D1DB,

          ∴EF//平面B1D1DB。

             (II)∵△D­1B1C1是正三角形,取B1C1中點G,

            1. 連接HE,F(xiàn)E。 …………8分

              ∵ABCD―A1B1C1D1是直棱柱,

              ∴C1C⊥平面A1B1C1D1

              又D1G平面A1B1C1D1,

              ∴C1C⊥D1G,又D1G⊥B1C1,

              ∴D1G⊥平面B1BCC1,又∵FH//D1G,

              ∴FH⊥平面B1BCC1,

              ∴∠FEH即為直線EF與平面B1BCC1所成角!10分

              21.(本小題滿分15分)

              解:(I)把點……1分

              …………3分

                 (II)當(dāng)

              單調(diào)遞減區(qū)間是,

              22.(本小題滿分15分)

                  解:(I)設(shè)翻折后點O坐標(biāo)為

                …………3分

                 ………………4分

              當(dāng)   ………………5分

              綜上,以  …………6分

              說明:軌跡方程寫為不扣分。

                 (II)(i)解法一:設(shè)直線

              解法二:由題意可知,曲線G的焦點即為……7分

                 (ii)設(shè)直線

              …………13分

              故當(dāng)