日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 可知.即 . 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù).(

          (1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

          (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

          【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

          解:(1)在區(qū)間上單調(diào)遞增,

          在區(qū)間上恒成立.  …………3分

          ,而當(dāng)時,,故. …………5分

          所以.                 …………6分

          (2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

          在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

                  …………9分

          ① 若,令,得極值點(diǎn),,

          當(dāng),即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

          當(dāng),即時,同理可知,在區(qū)間上遞增,

          ,也不合題意;                     …………11分

          ② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

          要使在此區(qū)間上恒成立,只須滿足,

          由此求得的范圍是.        …………13分

          綜合①②可知,當(dāng)時,函數(shù)的圖象恒在直線下方.

           

          查看答案和解析>>

          已知函數(shù)

          (1)試求的值域;

          (2)設(shè),若對, ,恒 成立,試求實(shí)數(shù)的取值范圍

          【解析】第一問利用

          第二問中若,則,即當(dāng)時,,又由(Ⅰ)知

          若對,,恒有成立,即轉(zhuǎn)化得到。

          解:(1)函數(shù)可化為,  ……5分

           (2) 若,則,即當(dāng)時,,又由(Ⅰ)知.        …………8分

          若對,,恒有成立,即,

          ,即的取值范圍是

           

          查看答案和解析>>

          精英家教網(wǎng)某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和s與t之間的關(guān)系).根據(jù)圖象提供的信息解答下列問題:
          (1)由已知圖象上的三點(diǎn)坐標(biāo),求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
          (2)求截止到第幾月末公司累積利潤可達(dá)到30萬元;
          (3)求第八個月該公司所獲利潤是多少萬元?

          查看答案和解析>>

          已知函數(shù),

          (1)求函數(shù)的定義域;

          (2)求函數(shù)在區(qū)間上的最小值;

          (3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

          【解析】第一問中,利用由 即

          第二問中,,得:

          ,

          第三問中,由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時;當(dāng)命題p為假,命題q為真時分為兩種情況討論即可 。

          解:(1)由 即

          (2),得:

          ,

          (3)由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時,

          當(dāng)命題p為假,命題q為真時,,

          所以

           

          查看答案和解析>>

          仔細(xì)閱讀下面問題的解法:
          設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍.
          解:由已知可得  a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學(xué)習(xí)以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設(shè)g(x)=
          10-x
          10+x
          x∈A,試判斷g(x)的單調(diào)性;(不證)
          (3)又若B={x|
          10-x
          10+x
          >2x+a-5},若A∩B≠Φ,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案