日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 綜上.存在.使得. ---------------- 查看更多

           

          題目列表(包括答案和解析)

          已知

          (1)求的單調(diào)區(qū)間;

          (2)證明:當時,恒成立;

          (3)任取兩個不相等的正數(shù),且,若存在使成立,證明:

          【解析】(1)g(x)=lnx+=        (1’)

          當k0時,>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;

          當k>0時,>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)

          (2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當x變化時,h(x),的變化情況如表

          x

          1

          (1,e)

          e

          (e,+)

           

          0

          +

          h(x)

          e-2

          0

          所以h(x)0, ∴f(x)2x-e                    (5’)

          設(shè)G(x)=lnx-(x1) ==0,當且僅當x=1時,=0所以G(x) 為減函數(shù), 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當x1時, 2x-ef(x)恒成立.

          (3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1      ∴l(xiāng)nx0 –lnx=-1–lnx===(10’)  設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵=

          ∴l(xiāng)nx0 –lnx>0, ∴x0 >x

           

          查看答案和解析>>

          已知,函數(shù)

          (1)當時,求函數(shù)在點(1,)的切線方程;

          (2)求函數(shù)在[-1,1]的極值;

          (3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

          【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設(shè),依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當時,  又    

          ∴  函數(shù)在點(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時,極大值為,無極小值

          時  極大值是,極小值是        ----------8分

          (Ⅲ)設(shè),

          求導(dǎo),得

          ,    

          在區(qū)間上為增函數(shù),則

          依題意,只需,即 

          解得  (舍去)

          則正實數(shù)的取值范圍是(

           

          查看答案和解析>>

          (2009全國卷Ⅱ文)(本小題滿分12分)

          已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

           
                      

          兩點,當l的斜率為1時,坐標原點O到l的距離為

           

          (Ⅰ)求a,b的值;

          (Ⅱ)C上是否存在點P,使得當l繞F轉(zhuǎn)到某一位置時,有成立?

          若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。

          解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關(guān)關(guān)系式計算,第二問利用向量坐標關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。

          查看答案和解析>>

          (2009全國卷Ⅱ文)(本小題滿分12分)

          已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

           
                      

          兩點,當l的斜率為1時,坐標原點O到l的距離為

           

          (Ⅰ)求a,b的值;

          (Ⅱ)C上是否存在點P,使得當l繞F轉(zhuǎn)到某一位置時,有成立?

          若存在,求出所有的P的坐標與l的方程;若不存在,說明理由。

          解析:本題考查解析幾何與平面向量知識綜合運用能力,第一問直接運用點到直線的距離公式以及橢圓有關(guān)關(guān)系式計算,第二問利用向量坐標關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。

          查看答案和解析>>

          (09年山東省實驗中學(xué)綜合測試理)(本小題滿分13分)已知橢圓的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.

             (1)求橢圓的方程;

             (2)過點的動直線L交橢圓C于A、B兩點,試問:在坐標平面上是否存在一

                  個定點T,使得以AB為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,

                  請說明理由.

          查看答案和解析>>


          同步練習(xí)冊答案