日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17.解(I)-------2分 -------4分 -------6分∴減區(qū)間為: -------8分 (2) ------10分 有最小值為 由已知 --------12分 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)

          (Ⅰ)若函數(shù)恰好有兩個(gè)不同的零點(diǎn),求的值。

          (Ⅱ)若函數(shù)的圖象與直線相切,求的值及相應(yīng)的切點(diǎn)坐標(biāo)。

          【解析】第一問(wèn)中,利用

          當(dāng)時(shí),單調(diào)遞增,此時(shí)只有一個(gè)零點(diǎn);

          當(dāng)時(shí),,得

          第二問(wèn)中,設(shè)切點(diǎn)為,則

          所以,當(dāng)時(shí),;當(dāng)時(shí),

          解:(Ⅰ)                             2分

          當(dāng)時(shí),單調(diào)遞增,此時(shí)只有一個(gè)零點(diǎn);

          當(dāng)時(shí),,得           4分

          (Ⅱ)設(shè)切點(diǎn)為,則         3分

          所以,當(dāng)時(shí),;當(dāng)時(shí),

           

          查看答案和解析>>

          已知,,

          (Ⅰ)求的值;

          (Ⅱ)求的值。

          【解析】第一問(wèn)中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091219580151983901_ST.files/image002.png">,∴

          第二問(wèn)中原式=

          =進(jìn)而得到結(jié)論。

          (Ⅰ)解:∵

          ……………………………………3

          ……………………………2

          (Ⅱ) 解:原式=  ……………………2

          =…………2

          =

           

          查看答案和解析>>

           

          三、解答題:解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟(本大題共6個(gè)大題,共76分)。

          17.(12分)以下資料是一位銷售經(jīng)理收集來(lái)的每年銷售額和銷售經(jīng)驗(yàn)?zāi)陻?shù)的關(guān)系:

          銷售經(jīng)驗(yàn)(年)

          1

          3

          4

          4

          6

          8

          10

          10

          11

          13

          年銷售額(千元)

          80

          97

          92

          102

          103

          111

          119

          123

          117

          136

           (1)依據(jù)這些數(shù)據(jù)畫(huà)出散點(diǎn)圖并作直線=78+4.2x,計(jì)算(yii2; 

           (2)依據(jù)這些數(shù)據(jù)由最小二乘法求線性回歸方程,并據(jù)此計(jì)算

           (3)比較(1)和(2)中的殘差平方和的大。

           

          查看答案和解析>>

          已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)設(shè),若對(duì)任意,不等式 恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問(wèn)利用的定義域是     

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

          第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

          解: (I)的定義域是     ......1分

                        ............. 2分

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

          (II)若對(duì)任意不等式恒成立,

          問(wèn)題等價(jià)于,                   .........5分

          由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

          故也是最小值點(diǎn),所以;            ............6分

          當(dāng)b<1時(shí),;

          當(dāng)時(shí),;

          當(dāng)b>2時(shí),;             ............8分

          問(wèn)題等價(jià)于 ........11分

          解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

           

          查看答案和解析>>

          某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查.瞬時(shí)記憶能力包括聽(tīng)覺(jué)記憶能力與視覺(jué)記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽(tīng)覺(jué)記憶能力為中等,且視覺(jué)記憶能力偏高的學(xué)生為3人.

               視覺(jué)         [來(lái)源:]

          視覺(jué)記憶能力

          偏低

          中等

          偏高

          超常

          聽(tīng)覺(jué)

          記憶

          能力

          偏低

          0

          7

          5

          1

          中等

          1

          8

          3

          偏高

          2

          0

          1

          超常

          0

          2

          1

          1

          由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上的概率為

          (I)試確定、的值;

          (II)從40人中任意抽取3人,求其中至少有一位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生的概率;

          (III)從40人中任意抽取3人,設(shè)具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望

          【解析】1)中由表格數(shù)據(jù)可知,視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上的學(xué)生共有(10+a)人.記“視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分

          所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分

          (2)中由表格數(shù)據(jù)可知,具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生共有8人.

          方法1:記“至少有一位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生”為事件B,

          則“沒(méi)有一位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生”為事件

          (3)中由于從40位學(xué)生中任意抽取3位的結(jié)果數(shù)為,其中具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的學(xué)生共24人,從40位學(xué)生中任意抽取3位,其中恰有k位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的結(jié)果數(shù)為,………………………7分

          所以從40位學(xué)生中任意抽取3位,其中恰有k位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的概率為,k=0,1,2,3

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案