日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 因而在上為增函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù),.

          (Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

          (Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

          【解析】第一問(wèn)中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。

          第二問(wèn)中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

          解:(1)

          (2)不等式 ,即,即.

          轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

          即不等式上恒成立.

          即不等式上恒成立.

          設(shè),則.

          設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

          在區(qū)間上是減函數(shù)。又

          故存在,使得.

          當(dāng)時(shí),有,當(dāng)時(shí),有.

          從而在區(qū)間上遞增,在區(qū)間上遞減.

          [來(lái)源:]

          所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有

          故使命題成立的正整數(shù)m的最大值為5

           

          查看答案和解析>>

          已知函數(shù),

          (1)求函數(shù)的定義域;

          (2)求函數(shù)在區(qū)間上的最小值;

          (3)已知,命題p:關(guān)于x的不等式對(duì)函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

          【解析】第一問(wèn)中,利用由 即

          第二問(wèn)中,,得:

          第三問(wèn)中,由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。

          解:(1)由 即

          (2)得:

          ,

          (3)由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時(shí),

          當(dāng)命題p為假,命題q為真時(shí),

          所以

           

          查看答案和解析>>

          已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線(xiàn)的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線(xiàn)上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.

          【解析】第一問(wèn)當(dāng)時(shí),,則

          依題意得:,即    解得

          第二問(wèn)當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問(wèn)假設(shè)曲線(xiàn)上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時(shí),,則

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時(shí),,令

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,。∴上的最大值為2.

          ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

          當(dāng)時(shí), 上單調(diào)遞增。∴最大值為。

          綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

          當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為

          (Ⅲ)假設(shè)曲線(xiàn)上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無(wú)解,因此。此時(shí),

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對(duì)于,方程(**)總有解,即方程(*)總有解。

          因此,對(duì)任意給定的正實(shí)數(shù),曲線(xiàn)上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>

          已知

          (1)求函數(shù)上的最小值

          (2)對(duì)一切的恒成立,求實(shí)數(shù)a的取值范圍

          (3)證明對(duì)一切,都有成立

          【解析】第一問(wèn)中利用

          當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,

          第二問(wèn)中,,則設(shè),

          單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷?duì)一切,恒成立, 

          第三問(wèn)中問(wèn)題等價(jià)于證明,

          由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

          設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立

          解:(1)當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,

                           …………4分

          (2),則設(shè),

          單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷?duì)一切,恒成立,                                             …………9分

          (3)問(wèn)題等價(jià)于證明,,

          由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

          設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立

           

          查看答案和解析>>

          “因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù),而y=(
          1
          2
          )x
          是指數(shù)函數(shù),所以y=(
          1
          2
          )x
          是增函數(shù).”在以上三段論推理中( 。

          查看答案和解析>>


          同步練習(xí)冊(cè)答案