日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文)一個(gè)電子元件.出廠前要進(jìn)行五項(xiàng)指標(biāo)檢查.如果至少有兩項(xiàng)指標(biāo)不合格.則這個(gè)元件不能出廠.已知每項(xiàng)指標(biāo)是否合格是相互獨(dú)立的.且每項(xiàng)檢查出現(xiàn)不合格的概率都是(1)求這個(gè)電子元件不能出廠的概率,(2)某個(gè)這種元件直到五項(xiàng)指標(biāo)全部檢查完.才能確定該元件是否可以出廠. 求這種情況的概率. 查看更多

           

          題目列表(包括答案和解析)

          如圖是一個(gè)電子元件在處理數(shù)據(jù)時(shí)的流程圖:輸入(x)→
          x≥1 → y1=x+2→
          x<1→y2=x2
          y=y12
          y=y2+2
          →輸出(y)
          (1)試確定y與x的函數(shù)關(guān)系式;
          (2)求f(-3),f(1)的值;
          (3)若f(x)=16,求x的值.

          查看答案和解析>>

          下面是一個(gè)電子元件在處理數(shù)據(jù)時(shí)的流程圖:
          精英家教網(wǎng)
          (1)試確定y與x的函數(shù)關(guān)系式;
          (2)求f(-3)、f(1)的值;
          (3)若f(x)=16,求x的值.

          查看答案和解析>>

          精英家教網(wǎng)精英家教網(wǎng)(文)一個(gè)多面體的三視圖(正前方垂直于平面AA1B1B)及直觀圖如圖(一)所示,(如圖二)M、N分別是A1B、B1C1的中點(diǎn).
          (1)計(jì)算多面體的體積;
          (2)求證MN∥平面AA1C1C;
          (3)若O是AB的中點(diǎn),求證AM⊥平面A1OC.

          查看答案和解析>>

          (文)一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫(huà)出了樣本的頻率分布直方圖(如圖),為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,則在(1500,2000)(元)月收入段應(yīng)抽出的人數(shù)為( 。

          查看答案和解析>>

          [文]在一個(gè)盒子中,放有標(biāo)號(hào)分別為1,2,3的三張卡片,現(xiàn)從這個(gè)盒子中有放回地先后抽得兩張卡片的標(biāo)號(hào)分別為x、y,記z=|x-2|+|y-x|.求z的所有可能的取值,并求出z取相應(yīng)值時(shí)的概率

          查看答案和解析>>

          1―6、AABCCD   7―12、DBBDCA

          13、(lg2,+∞)   14、0, 15、-1

          16、(文)-10,(理)(2-i)/3

          19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

              ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

              ∴BC長(zhǎng)度即為B點(diǎn)到平面A1C1CA的距離

              ∵BC=2  ∴點(diǎn)B到平面A1C1CA的距離為2……………………4分

          (2)分別延長(zhǎng)AC,A1D交于G. 過(guò)C作CM⊥A1G 于M,連結(jié)BM

              ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

              ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

              平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

              ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

              即二面角B―A1D―A的大小為                   ………………10分

             

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          (1)同解法一……………………4分

          (2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

          AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn)

          建立如圖所示的坐標(biāo)系得

          C(0,0,0) B(2,0,0)  A(0,2,0)

          C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

          D(0,0,1)  E(1,0,2)………………6分

            設(shè)平面A1BD的法向量為n

                 …………8分

          平面ACC1A1­的法向量為m=(1,0,0)  …………9分

          即二面角B―A1D―A的大小為………………10分

          20.(文) 解:將各項(xiàng)指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

          (1)由于“至少有兩項(xiàng)指標(biāo)不合格”,與“至多1項(xiàng)指標(biāo)不合格”對(duì)立,故這個(gè)電子

          元件不能出廠的概率為  ………………6分

          (2)直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項(xiàng)檢驗(yàn)中恰有1項(xiàng)

          檢驗(yàn)不合格. 故直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

          ……………………12分

          (理)  解:(Ⅰ)

           

          1

          2

          3

          4

          5

          6

          7

          8

          9

          P

          (Ⅱ)

          21.解:(1)當(dāng)k=0時(shí),y=1與3x2-y2=1有二公共點(diǎn);若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時(shí),直線與雙曲線漸近線平行,無(wú)二公共點(diǎn),所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-,)且k≠±時(shí),直線與雙曲線交于二點(diǎn),反之亦然.

          (2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因?yàn)閳A過(guò)原點(diǎn),以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

          22.解:(1)  ………………2分

              由已知條件得:    ………………4分

                 (2)………………5分

              ………………6分

              令    ………………7分

              ∴函數(shù)的單調(diào)遞增區(qū)間為

              當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

              綜上:當(dāng)m>0時(shí),函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時(shí),

              函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

             (3)由(1)得: 

              …………10分

              令………………11分

             

              即:……………………14分

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          數(shù)學(xué)2參考答案(2007年10月17日

          1―6、AABCCD   7―12、DBBDCA

          13、(lg2,+∞)   14、0, 15、-1

          16、(文)-10,(理)(2-i)/3

          19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

              ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

              ∴BC長(zhǎng)度即為B點(diǎn)到平面A1C1CA的距離

              ∵BC=2  ∴點(diǎn)B到平面A1C1CA的距離為2……………………4分

          (2)分別延長(zhǎng)AC,A1D交于G. 過(guò)C作CM⊥A1G 于M,連結(jié)BM

              ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

              ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

              平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

              ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

              即二面角B―A1D―A的大小為                   ………………10分

             

            1. (1)同解法一……………………4分

              (2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

              AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn)

              建立如圖所示的坐標(biāo)系得

              C(0,0,0) B(2,0,0)  A(0,2,0)

              C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

              D(0,0,1)  E(1,0,2)………………6分

                設(shè)平面A1BD的法向量為n

                     …………8分

              平面ACC1A1­的法向量為m=(1,0,0)  …………9分

              即二面角B―A1D―A的大小為………………10分

              20.(文) 解:將各項(xiàng)指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

              (1)由于“至少有兩項(xiàng)指標(biāo)不合格”,與“至多1項(xiàng)指標(biāo)不合格”對(duì)立,故這個(gè)電子

              元件不能出廠的概率為  ………………6分

              (2)直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項(xiàng)檢驗(yàn)中恰有1項(xiàng)

              檢驗(yàn)不合格. 故直到五項(xiàng)指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

              ……………………12分

              (理)  解:(Ⅰ)

              1

              2

              3

              4

              5

              6

              7

              8

              9

              P

              (Ⅱ)

              21.解:(1)當(dāng)k=0時(shí),y=1與3x2-y2=1有二公共點(diǎn);若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時(shí),直線與雙曲線漸近線平行,無(wú)二公共點(diǎn),所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-,)且k≠±時(shí),直線與雙曲線交于二點(diǎn),反之亦然.

              (2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因?yàn)閳A過(guò)原點(diǎn),以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

              22.解:(1)  ………………2分

                  由已知條件得:    ………………4分

                     (2)………………5分

                  ………………6分

                  令    ………………7分

                  ∴函數(shù)的單調(diào)遞增區(qū)間為

                  當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

                  綜上:當(dāng)m>0時(shí),函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時(shí),

                  函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

                 (3)由(1)得: 

                  …………10分

                  令………………11分

                 

                  即:……………………14分