日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)求角的大小, 查看更多

           

          題目列表(包括答案和解析)

          某小區(qū)規(guī)劃一塊周長為2a(a為正常數(shù))的矩形停車場,其中如圖所示的直角三角形ADP內(nèi)為綠化區(qū)域.且∠PAC=∠CAB.設(shè)矩形的長AB=x,AB>AD
          (1)求線段DP的長關(guān)于x的函數(shù)l(x)表達式并指出定義域;
          (2)應(yīng)如何規(guī)劃矩形的長AB,使得綠化面積最大?

          查看答案和解析>>

          (本小題12分)設(shè)函數(shù).

          (1)求函數(shù)的最大值和最小正周期;

          設(shè)A,B,C為的三個內(nèi)角,若且C為銳角,求.

          查看答案和解析>>

          (意大利餡餅問題)山姆的意大利餡餅屋中設(shè)有一個投鏢靶 該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機會贏得一種意大利餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時.可得到一個大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時,可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時,可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個顧客都能投鏢中靶,并假設(shè)每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:

          (a)一張大餡餅,

          (b)一張中餡餅,

          (c)一張小餡餅,

          (d)沒得到餡餅的概率

          查看答案和解析>>

          (本小題滿分12分)

          有一塊邊長為6m的正方形鋼板,將其四個角各截去一個邊長為x的小正方形,然后焊接成一個無蓋的蓄水池。

          (Ⅰ)寫出以x為自變量的容積V的函數(shù)解析式V(x),并求函數(shù)V(x)的定義域;

          (Ⅱ)指出函數(shù)V(x)的單調(diào)區(qū)間;

          (Ⅲ)蓄水池的底邊為多少時,蓄水池的容積最大?最大容積是多少?

          查看答案和解析>>


          (本小題滿分12分) 已知向量,.
          (1)若求向量的夾角;
          (2)當(dāng)時,求函數(shù)的最大值。

          查看答案和解析>>

          一、選擇題(每小題5分,共50分)

          二、填空題(每小題4分,共28分)

          三、解答題

          18.解:(Ⅰ)由已有

                                              (4分)

           

                                                      (6分)

           

          (Ⅱ)由(1)                                 (8分)

          所以              (10分)

                                                                (12分)

                                            (14分)

           

          19.解:(Ⅰ)同學(xué)甲同學(xué)恰好投4次達標(biāo)的概率           (4分)

          (Ⅱ)可取的值是

                                                        (6分)

                                                      (8分)

                                                        (10分)

          的分布列為

          3

          4

          5

                                                                                (12分)

          所以的數(shù)學(xué)期望為                   (14分)

           

          20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

          ∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

           

          (Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

          建立如圖所示空間直角坐標(biāo)系,則

          A(0,,0,0),P(0,0,),C(,0),D(,0)

          ,                  (6分)

          易求為平面PAC的一個法向量.

          為平面PDC的一個法向量                                  (9分)

          ∴cos

          故二面角D-PC-A的正切值為2.  (11分)

          (Ⅲ)設(shè),則

             ,

          解得點,即   (13分)

          (不合題意舍去)或

          所以當(dāng)的中點時,直線與平面所成角的正弦值為   (15分)

           

          21.解:(Ⅰ)設(shè)直線的方程為:

          ,所以的方程為                     (4分)

          點的坐標(biāo)為.

          可求得拋物線的標(biāo)準(zhǔn)方程為.                                       (6分)

          (Ⅱ)設(shè)直線的方程為,代入拋物線方程并整理得    (8分)     

          設(shè)

          設(shè),則

                                                (11分)

          當(dāng)時上式是一個與無關(guān)的常數(shù).

          所以存在定點,相應(yīng)的常數(shù)是.                                     (14分)

           

          22.解:(Ⅰ)當(dāng)               (2分)

          上遞增,在上遞減

          所以在0和2處分別達到極大和極小,由已知有

          ,因而的取值范圍是.                                   (4分)

          (Ⅱ)當(dāng)時,

            1. 市一次模理數(shù)參答―3(共4頁)

                                                      (7分)

              ,

              上遞減,在上遞增.

              從而上遞增

              因此                           (10分)

              (Ⅲ)假設(shè),即=

              ,

                                                   (12分)

              ,(x)=0的兩根可得,

              從而有

              ≥2,這與<2矛盾.                                

              故直線與直線不可能垂直.                                               (15分)

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>