日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ①函數=的定義域為.值域為,學科網 查看更多

           

          題目列表(包括答案和解析)

          表示值域為R的函數組成的集合,表示具有如下性質的函數組成的集合:對于函數,存在一個正數,使得函數的值域包含于區(qū)間。例如,當時,,.現(xiàn)有如下命題:
          ①設函數的定義域為,則“”的充要條件是“,,”;
          ②若學科網函數,則有最大值和最小值;
          ③若函數,的定義域相同,且,,則
          ④若函數,)有最大值,則.
          其中的真命題有      .(寫出所有真命題的序號)

          查看答案和解析>>

          表示值域為R的函數組成的集合,表示具有如下性質的函數組成的集合:對于函數,存在一個正數,使得函數的值域包含于區(qū)間.例如,當,時,,.現(xiàn)有如下命題:
          ①設函數的定義域為,則“”的充要條件是“,,”;
          ②學科網函數的充要條件是有最大值和最小值;
          ③若函數,的定義域相同,且,,則
          ④若函數,)有最大值,則.
          其中的真命題有      .(寫出所有真命題的序號)

          查看答案和解析>>

          (本題滿分14分)

              已知函數.

           。á瘢┤上的單調函數,試確定實數的取值范圍;[來源:學_科_網Z_X_X_K]

            (Ⅱ)求函數在定義域上的極值;

          (Ⅲ)設,求證:.

           

           

          查看答案和解析>>

          (本小題滿分13分)某市近郊有一塊大約500m×500m的接近正方形的荒地,地方政府準備在此建一個綜合性休閑廣場,首先要建設如圖所示的一個矩形場地,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為S平方米.

          (1)分別寫出用x表示y和S的函數關系式(寫出函數定義域);[來源:學§科§網]

          (2)怎樣設計能使S取得最大值,最大值為多少?

           

          查看答案和解析>>

          一、選擇題(每小題5分,共50分)

          二、填空題(每小題4分,共28分)

          三、解答題

          18.解:(Ⅰ)由已有

                                              (4分)

           

                                                      (6分)

           

          (Ⅱ)由(1)                                 (8分)

          所以              (10分)

                                                                (12分)

                                            (14分)

           

          19.解:(Ⅰ)同學甲同學恰好投4次達標的概率           (4分)

          (Ⅱ)可取的值是

                                                        (6分)

                                                      (8分)

                                                        (10分)

          的分布列為

          3

          4

          5

                                                                                (12分)

          所以的數學期望為                   (14分)

           

          20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

          ∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

           

          (Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

          建立如圖所示空間直角坐標系,則

          A(0,,0,0),P(0,0,),C(,0),D(,0)

          ,                  (6分)

          易求為平面PAC的一個法向量.

          為平面PDC的一個法向量                                  (9分)

          ∴cos

          故二面角D-PC-A的正切值為2.  (11分)

          (Ⅲ)設,則

             ,

          解得點,即   (13分)

          (不合題意舍去)或

          所以當的中點時,直線與平面所成角的正弦值為   (15分)

           

          21.解:(Ⅰ)設直線的方程為:

          ,所以的方程為                     (4分)

          點的坐標為.

          可求得拋物線的標準方程為.                                       (6分)

          (Ⅱ)設直線的方程為,代入拋物線方程并整理得    (8分)     

          ,則

                                                (11分)

          時上式是一個與無關的常數.

          所以存在定點,相應的常數是.                                     (14分)

           

          22.解:(Ⅰ)當               (2分)

          上遞增,在上遞減

          所以在0和2處分別達到極大和極小,由已知有

          ,因而的取值范圍是.                                   (4分)

          (Ⅱ)當時,

            1. 市一次模理數參答―3(共4頁)

                                                      (7分)

              ,

              上遞減,在上遞增.

              從而上遞增

              因此                           (10分)

              (Ⅲ)假設,即=

              ,

                                                   (12分)

              (x)=0的兩根可得,

              從而有

              ≥2,這與<2矛盾.                                

              故直線與直線不可能垂直.                                               (15分)

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>