題目列表(包括答案和解析)
(遼寧卷理19)如圖,在棱長為1的正方體
中,AP=BQ=b(0<b<1),截面PQEF∥,截面PQGH∥
.
(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,
并求出這個(gè)值;
(Ⅲ)若與平面PQEF所成的角為
,求
與平面PQGH所成角的正弦值.
說明:本小題主要考查空間中的線面關(guān)系,面面關(guān)系,解三角形等基礎(chǔ)知識(shí),考查空間想象能力與邏輯思維能力。滿分12分.
(遼寧卷理19)如圖,在棱長為1的正方體
中,AP=BQ=b(0<b<1),截面PQEF∥,截面PQGH∥
.
(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,
并求出這個(gè)值;
(Ⅲ)若與平面PQEF所成的角為
,求
與平面PQGH所成角的正弦值.
說明:本小題主要考查空間中的線面關(guān)系,面面關(guān)系,解三角形等基礎(chǔ)知識(shí),考查空間想象能力與邏輯思維能力。滿分12分.
已知函數(shù)其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(III)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。
【考點(diǎn)定位】本小題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點(diǎn),函數(shù)的最值等基礎(chǔ)知識(shí).考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.
某單位最近組織了一次健身活動(dòng),活動(dòng)分為登山組和游泳組,且每個(gè)職工至多參加了其中一組。在參加活動(dòng)的職工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山組的職工占參加活動(dòng)總?cè)藬?shù)的,且該組中,青年人占50%,中年人占40%,老年人占10%。為了了解各組不同的年齡層次的職工對(duì)本次活動(dòng)的滿意程度,現(xiàn)用分層抽樣的方法從參加活動(dòng)的全體職工中抽取一個(gè)容量為200的樣本。試確定
(Ⅰ)游泳組中,青年人、中年人、老年人分別所占的比例;
(Ⅱ)游泳組中,青年人、中年人、老年人分別應(yīng)抽取的人數(shù)。
本小題主要考查分層抽樣的概念和運(yùn)算,以及運(yùn)用統(tǒng)計(jì)知識(shí)解決實(shí)際問題的能力。
已知向量(
),向量
,
,
且.
(Ⅰ)求向量;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。
(1)問中∵,∴
,…………………1分
∵,得到三角關(guān)系是
,結(jié)合
,解得。
(2)由,解得
,
,結(jié)合二倍角公式
,和
,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵,∴
,…………1分
∵,∴
,即
① …………2分
又 ② 由①②聯(lián)立方程解得,
,
5分
∴ ……………6分
(Ⅱ)∵即
,
, …………7分
∴,
………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴
,即
,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一
∵,
,∴
,且
……7分
∴,從而
. …………………8分
由(Ⅰ)知,
; ………………9分
∴. ………………………………10分
又∵,∴
,
又
,∴
……11分
綜上可得 ………………………………12分
方法二∵,
,∴
,且
…………7分
∴.
……………8分
由(Ⅰ)知,
.
…………9分
∴
……………10分
∵,且注意到
,
∴,又
,∴
………………………11分
綜上可得 …………………12分
(若用,又∵
∴
,
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com