日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系中.點(diǎn)滿(mǎn)足.點(diǎn)所在區(qū)域的面積為. 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α,β,它們的終邊分別交單位圓于A,B兩點(diǎn).已知A,B兩點(diǎn)的橫坐標(biāo)分別是
          2
          10
          ,
          2
          5
          5

          (1)求tan(α+β)的值;
          (2)求α+2β的值.

          查看答案和解析>>

          (中線(xiàn)性運(yùn)算)在平面直角坐標(biāo)系中,若O為坐標(biāo)原點(diǎn),則A、B、C三點(diǎn)在同一直線(xiàn)上的充要條件為存在唯一的實(shí)數(shù)λ,使得
          OC
          =λ•
          OA
          +(1-λ)•
          OB
          成立,此時(shí)稱(chēng)實(shí)數(shù)λ為“向量
          OC
          關(guān)于
          OA
          OB
          的終點(diǎn)共線(xiàn)分解系數(shù)”.若已知P1(3,1)、P2(-1,3),且向量
          OP3
          與向量
          a
          =(1,1)垂直,則“向量
          OP3
          關(guān)于
          OP1
          OP2
          的終點(diǎn)共線(xiàn)分解系數(shù)”為( 。
          A、-3B、3C、1D、-1

          查看答案和解析>>

          設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
          (Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線(xiàn)的形狀;
          (Ⅱ)已知m=
          1
          4
          .證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
          (Ⅲ)已知m=
          1
          4
          .設(shè)直線(xiàn)l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

          查看答案和解析>>

          在平面直角坐標(biāo)系下,曲線(xiàn)C1
          x=2t+2a
          y=-t
          (t為參數(shù)),曲線(xiàn)C2:x2+(y-2)2=4.若曲線(xiàn)C1、C2有公共點(diǎn),則實(shí)數(shù)a的取值范圍
           

          查看答案和解析>>

          6、在平面直角坐標(biāo)系內(nèi),表中的方程表示什么圖形?畫(huà)出這些圖形.

          查看答案和解析>>

          第I卷(選擇題共50分)

          一、選擇題:本大題共10個(gè)小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中有且只有一項(xiàng)是符合題目要求的.

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          總分

          答案

          D

          B

          C

          C

          C

          D

          B

          D

          B

          D

           

          第Ⅱ卷(非選擇題共100分)

          二、填空題:本大題共7個(gè)小題,每小題4分,共28分,將答案填寫(xiě)在題中的橫線(xiàn)上.

              11.  0                          12.                    

              13.     -1                       14.            

          15.                16.                 17.___ ④____

          三、解答題:本大題共5個(gè)小題,第18-21題每小題14分,第22題16分,共72分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟

          18、數(shù)列滿(mǎn)足:

          (Ⅰ)記,求證:是等比數(shù)列;(Ⅱ)求數(shù)列的通項(xiàng)公式;

          解:(Ⅰ)

          ,是等比數(shù)列;

          (Ⅱ)

          19、如圖,平面四邊形ABCD中, AB=13, AC=10, AD=5,,=120,

          (Ⅰ) 求;  (Ⅱ) 設(shè)求實(shí)數(shù)x、y的值.

          解:(Ⅰ)設(shè)

          (Ⅱ)

          (其他方法解對(duì)同樣給分)

          20、如圖,正三棱柱ABCA1B1C1的各棱長(zhǎng)都相等,D、E分別是CC1AB1的中點(diǎn),點(diǎn)FBC上且滿(mǎn)足BFFC=1∶3 

          (Ⅰ)若MAB中點(diǎn),求證  BB1∥平面EFM;

          (Ⅱ)求證  EFBC

          (Ⅲ)求二面角A1B1DC1的大小 

          (1)    證明 連結(jié)EM、MF,∵M、E分別是正三棱柱的棱AB

          AB1的中點(diǎn),

          BB1ME,又BB1平面EFM,∴BB1∥平面EFM 

          (2)證明  取BC的中點(diǎn)N,連結(jié)AN由正三棱柱得  ANBC,

          BFFC=1∶3,∴FBN的中點(diǎn),故MFAN

          MFBC,而BCBB1BB1ME 

          MEBC,由于MFME=M,∴BC⊥平面EFM,

          EF平面EFM,∴BCEF 

          (3)解  取B1C1的中點(diǎn)O,連結(jié)A1O知,A1O⊥面BCC1B1,由點(diǎn)OB1D的垂線(xiàn)OQ,垂足為Q,連結(jié)A1Q,由三垂線(xiàn)定理,A1QB1D,故∠A1QD為二面角A1B1DC的平面角,易得∠A1QO=arctan 

          (建立坐標(biāo)系解對(duì)同樣給分)

          21、已知點(diǎn)D在定線(xiàn)段MN上,且|MN|=3,|DN|=1,一個(gè)動(dòng)圓C過(guò)點(diǎn)D且與MN相切,分別過(guò)M、N作圓C的另兩條切線(xiàn)交于點(diǎn)P.

          (Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求點(diǎn)P的軌跡方程;

          (Ⅱ)過(guò)點(diǎn)M作直線(xiàn)l與所求軌跡交于兩個(gè)不同的點(diǎn)A、B,

          ,且λ∈[2-,2+],記直線(xiàn)l

          與直線(xiàn)MN夾角為θ,求的取值范圍.

          解:(Ⅰ)以直線(xiàn)MN為x軸,MN的中點(diǎn)為坐標(biāo)原點(diǎn)O,

          建立直角坐標(biāo)系xOy. 

          ∵PM-PN=(PE+EM)-(PF+FN)=MD-ND=1

          或PM-PN=(PE+EM)-(PF+FN)=MD-ND=-1

          ∴點(diǎn)P的軌跡是以M、N為焦點(diǎn),實(shí)軸長(zhǎng)為1的雙曲線(xiàn)(不包含頂點(diǎn)),

          其軌跡方程為(y≠0) 

          (Ⅱ)設(shè)A(x1,y1),B(x2,y2),則=(x1+2,y1),=(x2+2,y2)

          設(shè)AB:my=x+,代入得,3(my-)2-y2-2=0,

          即(8m2-1)y2-24my+16=0.

           =λ,y1=-λy2,∴ 

          得,

          ∈[-2,0],即

           ,故

          22、已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),有

          (其中為自然對(duì)數(shù)的底,).

          (Ⅰ)若,求函數(shù)的解析式;

          (Ⅱ)試問(wèn):是否存在實(shí)數(shù),使得當(dāng),的最小值是?如果存在,求出實(shí)數(shù)的值;如果不存在,請(qǐng)說(shuō)明理由.

          (Ⅲ)設(shè)),求證:當(dāng)時(shí),;

          解:(Ⅰ)當(dāng)時(shí),,故有,由此及是奇函數(shù)得,因此,函數(shù)的解析式為

          (Ⅱ)當(dāng)時(shí),

          ①若,則在區(qū)間上是減函數(shù),故此時(shí)函數(shù)在區(qū)間上沒(méi)有最小值;

          ②若,則令,且在區(qū)間上是減函數(shù),而在區(qū)間上是增函數(shù),故當(dāng)時(shí),

          綜上所述,當(dāng)時(shí),函數(shù)在區(qū)間上的最小值是3.

          (Ⅲ)證明:令。當(dāng)時(shí),注意到,故有

                 ①當(dāng)時(shí),注意到,故

          ;

                 ②當(dāng)時(shí),有,故函數(shù)在區(qū)間上是增函數(shù),從而有

                 因此,當(dāng)時(shí),有。

                 又因?yàn)?sub>是偶函數(shù),故當(dāng)時(shí),同樣有,即

                 綜上所述,當(dāng)時(shí),有

           


          同步練習(xí)冊(cè)答案