日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知服從正態(tài)分布N(5.4).那么P()= . 查看更多

           

          題目列表(包括答案和解析)

          已知服從正態(tài)分布N(μ,σ2)的隨機(jī)變量在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ),和(μ-3σ,μ+3σ)內(nèi)取值的概率分別為68.3%,95.4%,和99.7%.某校為高一年級(jí)1000名新生每人定制一套校服,經(jīng)統(tǒng)計(jì),學(xué)生的身高(單位:cm)服從正態(tài)分布(165,52),則適合身高在155~175cm范圍內(nèi)的校服大約要定制( 。

          查看答案和解析>>

          下列四個(gè)命題中,正確的是( 。

          查看答案和解析>>

          下列四個(gè)命題中,正確的是( 。

          查看答案和解析>>

          (2012•臨沂二模)給出下列四個(gè)結(jié)論:
          ①“若am2<bm2,則a<b”的逆命題是真命題;
          ②設(shè)x,y∈R,則“x≥2或y≥2”是“x2+y2≥4”的充分不必要條件;
          ③函數(shù)y=loga(x+1)+1(a>0且a≠1)的圖象必過(guò)點(diǎn)(0,1);
          ④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
          其中正確結(jié)論的序號(hào)是
          ②③
          ②③
          .(填上所有正確結(jié)論的序號(hào))

          查看答案和解析>>

          下列四個(gè)命題中,正確的是( 。
          A、對(duì)于命題p:?x∈R,使得x2+x+1<0,則-p:?x∈R,均有x2+x+1>0
          B、函數(shù)f(x)=e-x-ex切線斜率的最大值是2
          C、已知ξ服從正態(tài)分布N(0,ρ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2;
          D、已知函數(shù)f(a)=∫0asinxdx,則f[f(
          π
          2
          )]1-cos1;

          查看答案和解析>>

          一.1、A,2、C,3、B,4、D,5、C,6、B,7、A,8、C,9、A,10、D

          二.11、-3;.12、1;13、14、15、

          三.16.解:

          ……(2’)

          整理得:……………………………(4’)

          又A為銳角,…………………(6’)

          (2)由(1)知………………………(7’)

          ……………………………(12’)

          當(dāng)B=600時(shí),Y取得最大值!(13’)

           17. 設(shè)答對(duì)題的個(gè)數(shù)為y,得分為,y=0,1,2,4 ,=0,2,4,8………(1’)

          ,       ,

          <sub id="o5kww"></sub>

            1. 0

              2

              4

              8

              P

               

              的分布列為

              …………………………………10分

                

               

               

               

              (2)E=…………………………12分

              答:該人得分的期望為2分……………………………………………………13分

              18. 解:(1)取AC中點(diǎn)D,連結(jié)SD、DB.

              ∵SA=SC,AB=BC,

              ∴AC⊥SD且AC⊥BD,

              ∴AC⊥平面SDB,又SB平面SDB,

              ∴AC⊥SB-----------4分

              (2)∵AC⊥平面SDB,AC平面ABC,

              ∴平面SDB⊥平面ABC.

              過(guò)N作NE⊥BD于E,NE⊥平面ABC,

              過(guò)E作EF⊥CM于F,連結(jié)NF,

              則NF⊥CM.

              ∴∠NFE為二面角N-CM-B的平面角---------------6分

              ∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.

              又∵NE⊥平面ABC,∴NE∥SD.

              ∵SN=NB,

              ∴NE=SD===, 且ED=EB.

              在正△ABC中,由平幾知識(shí)可求得EF=MB=

              在Rt△NEF中,tan∠NFE==2

              ∴二面角N―CM―B的大小是arctan2-----------------------8分

              (3)在Rt△NEF中,NF==

              ∴S△CMN=CM?NF=,

              S△CMB=BM?CM=2-------------11分

              設(shè)點(diǎn)B到平面CMN的距離為h,

              ∵VB-CMN=VN-CMB,NE⊥平面CMB,

              S△CMN?h=S△CMB?NE,∴h==.

              即點(diǎn)B到平面CMN的距離為--------13分

              19. (1)解:當(dāng)0<t≤10時(shí),
                是增函數(shù),且                3分
                當(dāng)20<t≤40時(shí),是減函數(shù),且                    6分
                所以,講課開(kāi)始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘                7分

              (2)解:,所以,講課開(kāi)始25分鐘時(shí),學(xué)生的注意力比講課開(kāi)始后5分鐘更集中 9分

              (3)當(dāng)0<t≤10時(shí),令得:                   10分
                當(dāng)20<t≤40時(shí),令得:                      12分
                則學(xué)生注意力在180以上所持續(xù)的時(shí)間
                所以,經(jīng)過(guò)適當(dāng)安排,老師可以在學(xué)生達(dá)到所需要的狀態(tài)下講授完這道題         14分

               

              20.解:

              (1)設(shè)

              當(dāng)時(shí)最大值為。故

              ………………………(6’)

              (2)由橢圓離心率得雙曲線

              設(shè)……………(7’)

              ①     當(dāng)AB⊥x軸時(shí),

              .…………(9’)

              ②當(dāng)時(shí).

              ………………………………………………(12’)

              同在內(nèi)……………(13’)

              =

              =有成立!(14’).

              21. (1)
                當(dāng)a≥0時(shí),在[2,+∞)上恒大于零,即,符合要求;      2分
                  當(dāng)a<0時(shí),令,g (x)在[2,+∞)上只能恒小于零
                故△=1+4a≤0或,解得:a≤
                ∴a的取值范圍是                                     6分

              (2)a = 0時(shí),
                當(dāng)0<x<1時(shí),當(dāng)x>1時(shí),∴              8分

              (3)反證法:假設(shè)x1 = b>1,由,
                  ∴
                故
                 ,即 、
                又由(2)當(dāng)b>1時(shí),,∴
                與①矛盾,故b≤1,即x1≤1
                同理可證x2≤1,x3≤1,…,xn≤1(n∈N*)                                 14分

               

               

              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>