日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)解:過作交于,連接, 查看更多

           

          題目列表(包括答案和解析)

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設平面PCD的法向量

          ,即.不防設,可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設點E的坐標為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          精英家教網(wǎng)如圖,在平面直角坐標系xoy中,拋物線y=
          1
          18
          x2-
          4
          9
          x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒)
          (1)求A,B,C三點的坐標和拋物線的頂點坐標;
          (2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
          (3)當t∈(0,
          9
          4
          )時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
          (4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

          查看答案和解析>>

          如圖,在平面直角坐標系xoy中,拋物線y=x2-x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒)
          (1)求A,B,C三點的坐標和拋物線的頂點坐標;
          (2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
          (3)當t∈(0,)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
          (4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

          查看答案和解析>>

          如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1
          精英家教網(wǎng)
          (1)求證:BE=EB1
          (2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
          注意:在下面橫線上填寫適當內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
          精英家教網(wǎng)
          (1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
          ①∵
           

          ∴EG⊥側(cè)面AC1;取AC的中點F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
          ②∵
           

          ∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個平面,交側(cè)面AC1于FG.
          ③∵
           

          ∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
          ④∵
           

          ∴FG∥AA1,△AA1C∽△FGC,
          ⑤∵
           

          FG=
          1
          2
          AA1=
          1
          2
          BB1
          ,即BE=
          1
          2
          BB1,故BE=EB1

          查看答案和解析>>

          如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1

          (1)求證:BE=EB1
          (2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
          注意:在下面橫線上填寫適當內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).

          (1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
          ①∵______
          ∴EG⊥側(cè)面AC1;取AC的中點F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
          ②∵______
          ∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個平面,交側(cè)面AC1于FG.
          ③∵______
          ∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
          ④∵______
          ∴FG∥AA1,△AA1C∽△FGC,
          ⑤∵______
          ,即

          查看答案和解析>>


          同步練習冊答案