日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求的關(guān)系式,學科網(wǎng) 查看更多

           

          題目列表(包括答案和解析)

           

          (本小題滿分12分)

          某中學研究性學習小組,為了考察高中學生的作文水平與愛看課外書的關(guān)系,在本校高三年級隨機調(diào)查了 50名學生.調(diào)査結(jié)果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.

          (Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運用獨立性檢驗思想,指出有多大把握認為中學生的作文水平與愛看課外書有關(guān)系?

          高中學生的作文水平與愛看課外書的2×2列聯(lián)表

           

          愛看課外書

          不愛看課外書

          總計

          作文水平好

           

           

           

          作文水平一般

           [來源:學?。網(wǎng)Z。X。X。K]

           

           

          總計

           

           

           

          (Ⅱ)將其中某5名愛看課外書且作文水平好的學生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學生也分別編號為1、2、3、4、5,從這兩組學生中各任選1人進行學習交流,求被選取的兩名學生的編號之和為3的倍數(shù)或4的倍數(shù)的概率.

          參考公式:,其中.

          參考數(shù)據(jù):

          [來源:學*科*網(wǎng)]

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

           

           

          查看答案和解析>>


          (本小題滿分12分)
          某中學研究性學習小組,為了考察高中學生的作文水平與愛看課外書的關(guān)系,在本校高三年級隨機調(diào)查了 50名學生.調(diào)査結(jié)果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.
          (Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運用獨立性檢驗思想,指出有多大把握認為中學生的作文水平與愛看課外書有關(guān)系?
          高中學生的作文水平與愛看課外書的2×2列聯(lián)表

           
          愛看課外書
          不愛看課外書
          總計
          作文水平
           
           
           
          作文水平一般
           [來源:學。科。網(wǎng)Z。X。X。K]
           
           
          總計
           
           
           
          (Ⅱ)將其中某5名愛看課外書且作文水平好的學生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學生也分別編號為1、2、3、4、5,從這兩組學生中各任選1人進行學習交流,求被選取的兩名學生的編號之和為3的倍數(shù)或4的倍數(shù)的概率.
          參考公式:,其中.
          參考數(shù)據(jù):
          [來源:學*科*網(wǎng)]
          0.10
          0.05
          0.025
          0.010
          0.005
          0.001

          2.706
          3.841
          5.024
          6.635
          7.879
          10.828
           

          查看答案和解析>>

          (本小題滿分12分)

          班主任為了對本班學生的考試成績進行分析,決定從全班25位女同學,15位男同學中隨機抽取一個容量為8的樣本進行分析.

          (1)如果按性別比例分層抽樣,可以得到多少個不同的樣本(只要求寫出算式即可,不必計算出結(jié)果);

          (2)隨機抽取8位同學,數(shù)學分數(shù)依次為:60,65,70,75,80,85,90,95;

          物理成績依次為:72,77,80,84,88,90,93,95,

          ①若規(guī)定90分(含90分)以上為優(yōu)秀,記為這8位同學中數(shù)學和物理分數(shù)均為優(yōu)秀的人數(shù),求的分布列和數(shù)學期望;

          ②若這8位同學的數(shù)學、物理分數(shù)事實上對應(yīng)下表:

          學生編號

          1

          2

          3

          4

          5

          6

          7[來源:Z#xx#k.Com]

          8

          數(shù)學分數(shù)

          60

          65

          70

          75

          80

          85

          90

          95

          物理分數(shù)

          72

          77

          80[來源:學科網(wǎng)]

          84

          88

          90

          93

          95

          根據(jù)上表數(shù)據(jù)可知,變量之間具有較強的線性相關(guān)關(guān)系,求出的線性回歸方程(系數(shù)精確到0.01).(參考公式:,其中,;參考數(shù)據(jù):,,,,

          查看答案和解析>>

          或7                   ………………………………14分

          16.(本小題滿分14分)

          (1)證明:E、P分別為AC、A′C的中點,

                  EP∥A′A,又A′A平面AA′B,EP平面AA′B

                 ∴即EP∥平面A′FB                  …………………………………………5分

          (2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

             ∴BC⊥A′E,∴BC⊥平面A′EC

               BC平面A′BC

             ∴平面A′BC⊥平面A′EC             …………………………………………9分

          (3)證明:在△A′EC中,P為A′C的中點,∴EP⊥A′C,

            在△A′AC中,EP∥A′A,∴A′A⊥A′C

                由(2)知:BC⊥平面A′EC   又A′A平面A′EC

                ∴BC⊥AA′

                ∴A′A⊥平面A′BC                   …………………………………………14分

                              …………………………………………15分

          (本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

          18.(本小題滿分15分)

          (1)延長BD、CE交于A,則AD=,AE=2

               則S△ADE= S△BDE= S△BCE=

                ∵S△APQ=,∴

                ∴             …………………………………………7分

          (2)

                    =?

          …………………………………………12分

              當

          ,            

          …………………………………………15分

          (3)

          設(shè)上式為 ,假設(shè)取正實數(shù),則?

          時,,遞減;

          ,,遞增. ……………………………………12分

                          

              

          ∴不存在正整數(shù),使得

                            …………………………………………16分

          ,顯然成立             ……………………………………12分

          時,,

          使不等式成立的自然數(shù)n恰有4個的正整數(shù)p值為3

                                    ……………………………………………16分

           

           

           

           

           

           

           

          泰州市2008~2009學年度第二學期期初聯(lián)考

          高三數(shù)學試題參考答案

          附加題部分

          度單位.(1),,由

          所以

          為圓的直角坐標方程.  ……………………………………3分

          同理為圓的直角坐標方程. ……………………………………6分

          (2)由      

          相減得過交點的直線的直角坐標方程為. …………………………10分

          D.證明:(1)因為

              所以          …………………………………………4分

              (2)∵   …………………………………………6分

              同理,,……………………………………8分

              三式相加即得……………………………10分

          22.(必做題)(本小題滿分10分)

          解:(1)記“恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學”為事件的, 則其概率為                …………………………………………4分

              答:恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學的概率為

          (1),,

          ,

                        ……………………………………3分

          (2)平面BDD1的一個法向量為

          設(shè)平面BFC1的法向量為

          得平面BFC1的一個法向量

          ∴所求的余弦值為                     ……………………………………6分

          (3)設(shè)

          ,由

          ,

          時,

          時,∴   ……………………………………10分

           


          同步練習冊答案