日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即 解得r=2或r=3. ------------------8分 查看更多

           

          題目列表(包括答案和解析)

          求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.

          【解析】利用圓心和半徑表示圓的方程,首先

          設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

          和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

          ∴r=,

          故所求圓的方程為:=2

          解:法一:

          設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

          和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

          ∴r=,                 ………………………10分

          故所求圓的方程為:=2                   ………………………12分

          法二:由條件設(shè)所求圓的方程為: 

           ,          ………………………6分

          解得a=1,b=-2, =2                     ………………………10分

          所求圓的方程為:=2             ………………………12分

          其它方法相應(yīng)給分

           

          查看答案和解析>>

          已知,設(shè)是方程的兩個根,不等式對任意實(shí)數(shù)恒成立;函數(shù)有兩個不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

          【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.

          要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          可得到要使“P∧Q”為真命題,只需P真Q真即可。

          解:由題設(shè)x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當(dāng)a∈[1,2]時(shí),的最小值為3.

          要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          綜上,要使“P∧Q”為真命題,只需P真Q真,即

          解得實(shí)數(shù)m的取值范圍是(4,8]

           

          查看答案和解析>>

          (1)若不等式ax2+bx+c<0解集為{x|x<2或x>3},解關(guān)于x的不等式bx2+ax+c>0,(a∈R);
          (2)解關(guān)于x的不等式ax2+(2a-1)x-2<0(a∈R)

          查看答案和解析>>

          (2014•長寧區(qū)一模)已知a∈R,不等式
          x-3
          x+a
          ≥1
          的解集為P,且-2∉P,則a的取值范圍是( 。

          查看答案和解析>>

          函數(shù)是定義在上的奇函數(shù),且

          (1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;

          (2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

          (3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

          【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且。

          解得,

          (2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

          (3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),

          解:(1)是奇函數(shù),。

          ,,………………2分

          ,又,,,

          (2)任取,且,

          ,………………6分

          ,

          ,,

          在(-1,1)上是增函數(shù)!8分

          (3)單調(diào)減區(qū)間為…………………………………………10分

          當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),。

           

          查看答案和解析>>


          同步練習(xí)冊答案