日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ①若.則.不合題意, 14分 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          已知集合.對于A的一個子集S,若存在不大于的正整數(shù)m,使得對于S中的任意一對元素,都有,則稱S具有性質(zhì)P.

          (Ⅰ)當時,試判斷集合是否具有性質(zhì)P?并說明理由.

          (Ⅱ)若

          若集合S具有性質(zhì)P,那么集合是否一定具有性質(zhì)P?并說明理由;

          若集合S具有性質(zhì)P,求集合S中元素個數(shù)的最大值.

          查看答案和解析>>

          本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
          (1)選修4-2:矩陣與變換
          已知矩陣A=
          12
          34

          ①求矩陣A的逆矩陣B;
          ②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
          (2)選修4-4:坐標系與參數(shù)方程
          已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
          x=1+2cosα
          y=-1+2sinα
          (a為參數(shù)),點Q極坐標為(2,
          7
          4
          π).
          (Ⅰ)化圓C的參數(shù)方程為極坐標方程;
          (Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
          (3)選修4-5:不等式選講
          (I)關(guān)于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
          (II)設(shè)x,y,z∈R,且
          x2
          16
          +
          y2
          5
          +
          z2
          4
          =1
          ,求x+y+z的取值范圍.

          查看答案和解析>>

          本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
          (1)選修4-2:矩陣與變換
          已知矩陣A=
          ①求矩陣A的逆矩陣B;
          ②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
          (2)選修4-4:坐標系與參數(shù)方程
          已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為(a為參數(shù)),點Q極坐標為(2,π).
          (Ⅰ)化圓C的參數(shù)方程為極坐標方程;
          (Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
          (3)選修4-5:不等式選講
          (I)關(guān)于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
          (II)設(shè)x,y,z∈R,且,求x+y+z的取值范圍.

          查看答案和解析>>

          已知函數(shù) R).

          (Ⅰ)若 ,求曲線  在點  處的的切線方程;

          (Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。

          第一問中,利用當時,

          因為切點為(), 則,                 

          所以在點()處的曲線的切線方程為:

          第二問中,由題意得,即可。

          Ⅰ)當時,

          ,                                  

          因為切點為(), 則,                  

          所以在點()處的曲線的切線方程為:.    ……5分

          (Ⅱ)解法一:由題意得,.      ……9分

          (注:凡代入特殊值縮小范圍的均給4分)

          ,           

          因為,所以恒成立,

          上單調(diào)遞增,                            ……12分

          要使恒成立,則,解得.……15分

          解法二:                 ……7分

                (1)當時,上恒成立,

          上單調(diào)遞增,

          .                  ……10分

          (2)當時,令,對稱軸,

          上單調(diào)遞增,又    

          ① 當,即時,上恒成立,

          所以單調(diào)遞增,

          ,不合題意,舍去  

          ②當時,, 不合題意,舍去 14分

          綜上所述: 

           

          查看答案和解析>>


          同步練習(xí)冊答案