日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又..故. 查看更多

           

          題目列表(包括答案和解析)

          已知中,,.設(shè),記.

          (1)   求的解析式及定義域;

          (2)設(shè),是否存在實數(shù),使函數(shù)的值域為?若存在,求出的值;若不存在,請說明理由.

          【解析】第一問利用(1)如圖,在中,由,,

          可得,

          又AC=2,故由正弦定理得

           

          (2)中

          可得.顯然,,則

          1當(dāng)m>0的值域為m+1=3/2,n=1/2

          2當(dāng)m<0,不滿足的值域為;

          因而存在實數(shù)m=1/2的值域為.

           

          查看答案和解析>>

          如圖,在南北方向直線延伸湖岸上有一港口A,一汽艇以60 km/h的速度從A出發(fā),30分鐘后因故障而停在湖里.已知汽艇出發(fā)后按直線前進(jìn),以后又改成正東方向航行,但不知最初的方向和何時改變方向.現(xiàn)要去營救,請用圖表示營救的區(qū)域.

          查看答案和解析>>

          在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

          (Ⅰ)求角B的大。

          (Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

          【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用

          第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

          p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

          根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

          ,又由余弦定理=2acosB,所以cosB=,B=

          第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

          =2ksinA+-=-+2ksinA+=-+ (k>1).

          而0<A<,sinA∈(0,1],故當(dāng)sin=1時,m·n取最大值為2k-=3,得k=.

           

          查看答案和解析>>

          中,已知 ,面積

          (1)求的三邊的長;

          (2)設(shè)(含邊界)內(nèi)的一點,到三邊的距離分別是

          ①寫出所滿足的等量關(guān)系;

          ②利用線性規(guī)劃相關(guān)知識求出的取值范圍.

          【解析】第一問中利用設(shè)中角所對邊分別為

              

          又由 

          又由 

                 又

          的三邊長

          第二問中,①

          依題意有

          作圖,然后結(jié)合區(qū)域得到最值。

           

          查看答案和解析>>

          已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點.

          (Ⅰ)當(dāng)直線過右焦點時,求直線的方程;

          (Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

          【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

          第二問中設(shè),由,消去x,得,

          則由,知<8,且有

          由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().

          由題意可知,2|MO|<|GH|,得到范圍

           

          查看答案和解析>>


          同步練習(xí)冊答案