日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21.設(shè)x=1是函數(shù)的一個(gè)極值點(diǎn)(). 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)設(shè)函數(shù)ab、c、d∈R)圖象關(guān)于原點(diǎn)對(duì)稱,且x=1時(shí),取極小值

                 (Ⅰ)求函數(shù)的解析式;

                 (Ⅱ)若對(duì)任意的,恒有成立,求的取值范圍;

                 (Ⅲ)當(dāng)時(shí),函數(shù)圖象上是否存在兩點(diǎn),使得過(guò)此兩點(diǎn)處的切線互相垂直?試證明你的結(jié)論;

                 (IV)設(shè)表示的曲線為G,過(guò)點(diǎn)作曲線G的切線,求的方程.

          查看答案和解析>>

          (本小題滿分14分)

          設(shè)是定義在[-1,1]上的偶函數(shù),的圖象與的圖象關(guān)于直線對(duì)稱,且當(dāng)x∈[ 2,3 ] 時(shí), 222233

          (1)求的解析式;

          (2)若上為增函數(shù),求的取值范圍;

          (3)是否存在正整數(shù),使的圖象的最高點(diǎn)落在直線上?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          (本小題滿分14分)設(shè)函數(shù)的圖象與x軸相交于一點(diǎn),且在點(diǎn)處的切線方程是

             (I)求t的值及函數(shù)的解析式;

             (II)設(shè)函數(shù)

                  (1)若的極值存在,求實(shí)數(shù)m的取值范圍。

                  (2)假設(shè)有兩個(gè)極值點(diǎn)的表達(dá)式并判斷是否有最大值,若有最大值求出它;若沒(méi)有最大值,說(shuō)明理由。

          查看答案和解析>>

          (本小題滿分14分)

          設(shè)函數(shù),函數(shù)g(x)=分別在x=m和x=n處取得極值,且

          m<n

          (1)求的值

          (2)求證:f(x)在區(qū)間[m,n]上是增函數(shù)

          (3)設(shè)f(x)在區(qū)間[m,n]上的最大值和最小值分別為M和N,試問(wèn)當(dāng)實(shí)數(shù)a為何值時(shí),M-N取得最小值?并求出這個(gè)最小值

           

          查看答案和解析>>

          (本小題滿分14分)設(shè)函數(shù)f(x) = x2 + bln(x+1),

          (1)若對(duì)定義域的任意x,都有f(x)≥f(1)成立,求實(shí)數(shù)b的值;

          (2)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)b的取值范圍;

          (3)若b = -1,,證明對(duì)任意的正整數(shù)n,不等式都成立

           

          查看答案和解析>>

           

          .1.B  2.B  3.A  4.B   5.A  6.D   7.C   8.A   9.A    10.C

           

          二.11.5        12.36         13.       14.        

          15. 適合①的不等式如:或其它曲線型只要適合即可

           

          三.16.解: (1)

          即AB邊的長(zhǎng)度為2.                  …………… …………5分

          (2)由已知及(1)有:     

                                        ……………8分

          由正弦定理得:                  ……………10分

          =   …………12分

           

          17.解:  ①依題意可設(shè)                           ………1分

          對(duì)n=1,2,3,……都成立                                      ………3分

          ∴ 又解得

           

                            ………6分

           

          ②∵        …………9分

          + ++…+

                           ……12分

           

          18.解:(Ⅰ)依題意,記“甲投一次命中”為事件A,“乙投一次命中”為事件B,

             則              …………3分

              ∵“甲、乙兩人各投球一次,都沒(méi)有命中”的事件為

                               …………5分

          (Ⅱ)∵甲、乙兩人在罰球線各投球二次時(shí),

          甲命中1次,乙命中0次的概率為  …………7分

          甲命中2次,乙命中0次的概率為…………9分

          甲命中2次,乙命中1次”的概率為…………11分

          故甲、乙兩人在罰球線各投球兩次,甲投球命中的次數(shù)比乙投球命中的次數(shù)多的

          概率為P=                                 …………12分

           

          19.解法1:取BE的中點(diǎn)O,連OC.

          ∵BC=CE, ∴OC⊥BE.又AB⊥平面BCE.   

          以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系O-xyz如圖,

          則由已知條件有:,,

          , ……4分

          設(shè)平面ADE的法向量為=,

          則由n?

          n?

          可取                    ……6分 

          又AB⊥平面BCE. ∴AB⊥OC.OC⊥平面ABE

          ∴平面ABE的法向量可取為m.

          n?m?=0,

          m∴平面ADE⊥平面ABE.                        ……8分

          ⑵點(diǎn)C到平面ADE的距離為……12分

          解法2:取BE的中點(diǎn)O,AE的中點(diǎn)F,連OC,OF,CD.則

          ∵AB⊥平面BCE,CD⊥平面BCE, AB=2CD

          ∴CD , CD∴∥ FD  ……3分

          ∵BC=CE, ∴OC⊥BE.又AB⊥平面BCE.

          ∴OC⊥平面ABE. ∴FD⊥平面ABE.

          從而平面ADE.⊥平面ABE.     ……6分

          ②∵CD ,延長(zhǎng)AD, BC交于T

          則C為BT的中點(diǎn).

          點(diǎn)C到平面ADE的距離等于點(diǎn)B到平面ADE的距離的.……8分

          過(guò)B作BH⊥AE,垂足為H!咂矫鍭DE.⊥平面ABE!郆H⊥平面BDE.

          由已知有AB⊥BE. BE=,AB= 2, ∴BH=,

          從而點(diǎn)C到平面ADE的距離為    ……………… ……………12分

          ∥ FD, 點(diǎn)C到平面ADE的距離等于點(diǎn)O到平面ADE的距離為.

          或取A B的中點(diǎn)M。易證∥ DA。點(diǎn)C到平面ADE的距離等于點(diǎn)M到平面ADE的距離為.

           

          20. 解: (I)設(shè)O為原點(diǎn),則=2,=2。

          =,得=,

          于是O、P、Q三點(diǎn)共線。                           ……………2分

          因?yàn)?sub>所以PF∥QF/,且 ,……………3分

          ,

                                    ……………5分

          因此橢圓的離心率為雙曲線的離心率為       ……………7分

           

          (II)設(shè),

          點(diǎn)P在雙曲線的上,有。

          .

          所以。    ①…………9分

          又由點(diǎn)Q在橢圓上,有。

          同理可得       ②                  ……………10分

          ∵O、P、Q三點(diǎn)共線!。

          由①、②得。                 ……………13分

          21. 解:(I)                    ……………1分

          由已知有:,∴  ……………3分

          從而

          =0得:x1=1,x2. ∵ ∴x2

          當(dāng)x變化時(shí),、f(x)的變化情況如下表:

           

          增函數(shù)

          減函數(shù)

          增函數(shù)

           

          從上表可知:,上是增函數(shù);

          ,上是減函數(shù)   ……………6分

           

          (II)∵m>0,∴m+1>1.  由(I)知:

           

          ①當(dāng)0<m<1時(shí),. 則最小值為得:   ……8分

          此時(shí).從而

          ∴最大值為

          此時(shí)適合.       ……10分

           

          ②當(dāng)m1時(shí), 在閉區(qū)間上是增函數(shù).

          ∴最小值為                  ⑴

          最大值為=0.    ⑵………12分

          由⑵得:    ⑶

          ⑶代入⑴得:.即

          又m1, 從而

          ∴此時(shí)的a,m不存在

          綜上知: ,.                               ………14分                         

           

           

           

           


          同步練習(xí)冊(cè)答案