日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解](Ⅰ)由已知得 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對任意的成立,求實數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域為

          ,得

          當(dāng)x變化時,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

          ,得

          ①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時,,對于,,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

          當(dāng)時,

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>

          已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

          (Ⅰ)若 ,是否存在,有?請說明理由;

          (Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

          (Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.

          【解析】第一問中,由,整理后,可得、為整數(shù)不存在、,使等式成立。

          (2)中當(dāng)時,則

          ,其中是大于等于的整數(shù)

          反之當(dāng)時,其中是大于等于的整數(shù),則

          顯然,其中

          滿足的充要條件是,其中是大于等于的整數(shù)

          (3)中設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時,式不成立。由式得,整理

          當(dāng)時,符合題意。當(dāng),為奇數(shù)時,

          結(jié)合二項式定理得到結(jié)論。

          解(1)由,整理后,可得為整數(shù)不存在,使等式成立。

          (2)當(dāng)時,則,其中是大于等于的整數(shù)反之當(dāng)時,其中是大于等于的整數(shù),則

          顯然,其中

          滿足的充要條件是,其中是大于等于的整數(shù)

          (3)設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時,式不成立。由式得,整理

          當(dāng)時,符合題意。當(dāng),為奇數(shù)時,

             由,得

          當(dāng)為奇數(shù)時,此時,一定有使上式一定成立。當(dāng)為奇數(shù)時,命題都成立

           

          查看答案和解析>>

          已知數(shù)列滿足(I)求數(shù)列的通項公式;

          (II)若數(shù)列,前項和為,且證明:

          【解析】第一問中,利用,

          ∴數(shù)列{}是以首項a1+1,公比為2的等比數(shù)列,即 

          第二問中, 

          進(jìn)一步得到得    即

          是等差數(shù)列.

          然后結(jié)合公式求解。

          解:(I)  解法二、

          ∴數(shù)列{}是以首項a1+1,公比為2的等比數(shù)列,即 

          (II)     ………②

          由②可得: …………③

          ③-②,得    即 …………④

          又由④可得 …………⑤

          ⑤-④得

          是等差數(shù)列.

               

           

          查看答案和解析>>

          已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項和.

          (1)求數(shù)列的通項公式和數(shù)列的前n項和;

          (2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

          (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

          【解析】第一問利用在中,令n=1,n=2,

             即      

          解得,, [

          時,滿足,

          第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時取得.

          此時 需滿足.  

          ②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時取得最小值-6.

          此時 需滿足

          第三問,

               若成等比數(shù)列,則

          即.

          ,可得,即,

                  .

          (1)(法一)在中,令n=1,n=2,

             即      

          解得,, [

          時,滿足,

          ,

          (2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

           ,等號在n=2時取得.

          此時 需滿足.  

          ②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時取得最小值-6.

          此時 需滿足

          綜合①、②可得的取值范圍是

          (3)

               若成等比數(shù)列,則,

          即.

          ,可得,即,

          ,且m>1,所以m=2,此時n=12.

          因此,當(dāng)且僅當(dāng)m=2, n=12時,數(shù)列中的成等比數(shù)列

           

          查看答案和解析>>

          已知函數(shù)取得極值

          (1)求的單調(diào)區(qū)間(用表示);

          (2)設(shè),若存在,使得成立,求的取值范圍.

          【解析】第一問利用

          根據(jù)題意取得極值,

          對參數(shù)a分情況討論,可知

          當(dāng)時遞增區(qū)間:    遞減區(qū)間: ,

          當(dāng)時遞增區(qū)間:    遞減區(qū)間: ,

          第二問中, 由(1)知: ,

          ,

           

          從而求解。

          解:

          …..3分

          取得極值, ……………………..4分

          (1) 當(dāng)時  遞增區(qū)間:    遞減區(qū)間: ,

          當(dāng)時遞增區(qū)間:    遞減區(qū)間: , ………….6分

           (2)  由(1)知:

          ,

           

          ……………….10分

          , 使成立

              得:

           

          查看答案和解析>>


          同步練習(xí)冊答案