日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∵x > 0 , 得. --- 4分 查看更多

           

          題目列表(包括答案和解析)

          5.A解析:因?yàn)楹瘮?shù)有0,1,2三個(gè)零點(diǎn),可設(shè)函數(shù)為f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax

          因此b=-3a,又因?yàn)楫?dāng)x>2時(shí)f(x)>0所以a>0,因此b<0

          若由一個(gè)2*2列聯(lián)表中的數(shù)據(jù)計(jì)算得k=4.013,那么有          把握認(rèn)為兩個(gè)變量有關(guān)系.

          查看答案和解析>>

          已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問利用的定義域是     

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

          第二問中,若對(duì)任意不等式恒成立,問題等價(jià)于只需研究最值即可。

          解: (I)的定義域是     ......1分

                        ............. 2分

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

          (II)若對(duì)任意不等式恒成立,

          問題等價(jià)于,                   .........5分

          由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

          故也是最小值點(diǎn),所以;            ............6分

          當(dāng)b<1時(shí),;

          當(dāng)時(shí),

          當(dāng)b>2時(shí),;             ............8分

          問題等價(jià)于 ........11分

          解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

           

          查看答案和解析>>

          已知函數(shù)f(x)=alnx-x2+1.

          (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

          (2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

          【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          第二問中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

          ∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,

          即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來解得。

          (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          (2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

          令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

          ∵g′(x)=-2x+1=(x>0),

          ∴-2x2+x+a≤0在x>0時(shí)恒成立,

          ∴1+8a≤0,a≤-,又a<0,

          ∴a的取值范圍是

           

          查看答案和解析>>

          因?yàn)楹瘮?shù)有0,1,2三個(gè)零點(diǎn),可設(shè)函數(shù)為f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
          因此b=-3a,又因?yàn)楫?dāng)x>2時(shí)f(x)>0所以a>0,因此b<0
          若由一個(gè)2*2列聯(lián)表中的數(shù)據(jù)計(jì)算得k=4.013,那么有________把握認(rèn)為兩個(gè)變量有關(guān)系.

          查看答案和解析>>

          先閱讀下列不等式的證法,再解決后面的問題:
          已知a1,a2∈R,a1+a2=1,求證a12+a22
          1
          2
          ,
          證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22=2x2-2x+a12+a22
          因?yàn)閷?duì)一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,從而得a12+a22
          1
          2
          ,
          (1)若a1,a2,…,an∈R,a1+a2+…+an=1,請(qǐng)寫出上述結(jié)論的推廣式;
          (2)參考上述解法,對(duì)你推廣的結(jié)論加以證明.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案