日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. B.∥⊥⊥ 查看更多

           

          題目列表(包括答案和解析)

          B.已知矩陣M=
          12
          2x
          的一個特征值為3,求另一個特征值及其對應的一個特征向量.
          C.在極坐標系中,圓C的方程為ρ=2
          2
          sin(θ+
          π
          4
          )
          ,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
          x=t
          y=1+2t
          (t為參數(shù)),判斷直線l和圓C的位置關系.

          查看答案和解析>>

          B.選修4-2:矩陣與變換
          設a>0,b>0,若矩陣A=
          .
          a0
          0b
          .
          把圓C:x2+y2=1變換為橢圓E:
          x2
          4
          +
          y2
          3
          =1.
          (1)求a,b的值;
          (2)求矩陣A的逆矩陣A-1
          C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
          π
          6
          )=a截得的弦長為2
          3
          ,求實數(shù)a的值.

          查看答案和解析>>

          B.(不等式選做題)若關于x的方程x2+x+|a-
          14
          |+|a|=0(a∈R)
          有實根,則a的取值范圍是
           

          查看答案和解析>>

          B.選修4-2:矩陣與變換

          試求曲線在矩陣MN變換下的函數(shù)解析式,其中M =,N =

          查看答案和解析>>

          B.選修4-2:矩陣與變換
          已知矩陣A,其中,若點在矩陣A的變換下得到
          (1)求實數(shù)的值;
          (2)矩陣A的特征值和特征向量.

          查看答案和解析>>

           

          一、選擇題:本大題共12小題,每小題5分,共60分。

                 AABC    BDDC    DBAB

          二、填空題:本大題共4小題,每小題4分,共16分。

          13.3    14.2    15.    16.①④

          三、解答題:本大題共6小題,共74分。

          17.解:                                                                                1分

          ∴CD⊥AB,∴∠ADC=900。

                 在Rt中,                                                               4分

                                                                                                                            6分

                                                                 7分

                 又∵,∴                  9分

                 ∴=×-×                                                     12分

          18.解:(Ⅰ)當時,                                                    1分

                 當≥2時,

                         3分

                 ∵是等差數(shù)列,符合≥2時,的形式,

           

                 ∴                                                                 5分

             (Ⅱ)∵,由題意得                                                        7分

          ,解得                                        8分

                 ∴                                                                                                 9分

                 由。

                 ∴,即是首項為2,

                 公比為16的等比數(shù)列                                                                                      11分

                 ∴數(shù)列的前n項和                                   12分

          19.解:設90-140分之間的人數(shù)是,由130-140分數(shù)段的人數(shù)為2人

                 可知0.005×10×=2,得

             (Ⅰ)平均數(shù)95×0.1+105×0.25+115×0.45+125×0.15+135×0.05=113. 4分

                 中位數(shù)=                                                         6分

             (Ⅱ)依題意,第一組共有40×0.01×10=4人,記作;第五組共有2分,記作從第一組和第五組中任意選出兩人共有下列15種選法:{A1,A2}、{A1,A3}、{A1,A4}、{A2,A3}、{A2,A4}、{A3A4};{A1,B1}、{A2,B1}、{A2,B2}、

                 {A3B1}、{A3B2}、{A4,B1}、{A4,B2}、{A1B2}、                                     9分

                 設事件A:選出的兩人為“黃金搭檔組”。若兩人成績之差大于20,則兩人分別來自于第一組和第五組,共有8中選法,故                                          12分

          20.解:(Ⅰ)空間幾何體的直觀圖如圖所示,

                 且可得到平面ABCD⊥平面ABG,四邊形

                 ABCD為正方形,AG=BG=

                 故AG⊥BG………………………………4分

             (Ⅱ)∵平面ABCD⊥平面ABG,

                 面ABCD∩平面ABG=AB,CB⊥AB,

                 ∴CB⊥平面ABG,故CB⊥AG………6分

                 又AG⊥BG,∴AG⊥平面BGC。

                 ∴平面AGD⊥平面BGC………………8分

             (Ⅲ)過G作GE⊥AB,垂足為E,則GE⊥平面ABCD

                                      12分

          21.(Ⅰ)依題意,直線顯然不平行于坐標軸,故可化為

                 將 代入,消去,得

                                                                ①                     1分

                 由直線與橢圓相交于兩個不同的點,得

                 △=                                                                 2分

                 化簡整理即得(☆)                                                                 4分

             (Ⅱ)Ax1y1),Bx2y2),由①,得  ②                     5分

                 因為,

                 得                                                                          ③                     6分

                 由②③聯(lián)立,解得                                             ④                     7分

                 △OAB的面積

                 =

          上式取等號的條件是,

                 即………………9分

                 當時,由④解得;當時,由④解得

                 將這兩組值分別代入①,

                 均可解出                                                                                              11分

                 經(jīng)驗證,,滿足(☆)式。

                 所以,△OAB的面積取得最大值時橢圓方程是                          12分

                 注:若未驗證(說明)滿足(☆)式,扣1分。

          22.(Ⅰ)由題設條件,可設這里                     1分

                 所以         ①

                 又有兩個相等的實數(shù)根,而,

                 所以判別式△=,即                              3分

                 解得(舍去),或=-1,代入①式得                    4分

             (Ⅱ)

                 因為在區(qū)間內單調遞減,

                 所以時恒成立                      5分

                 ∵,對稱軸為直線上為增函數(shù),

                 故只需                                     8分

                 注意到,解得(舍去)。故的取值范圍是        10分

             (Ⅲ)當時,方程即為

                 令,得…11分

                 易知上單調遞增,在上單調遞減,

                 的極大值的極小值                      13分

                 而使,時,,

                 故函數(shù)的圖象與軸有且只有一個公共點,

                 方程僅有一個實數(shù)根                                                               14分

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           


          同步練習冊答案