日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)時(shí).即解得 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)=.

          (Ⅰ)當(dāng)時(shí),求不等式 ≥3的解集;

          (Ⅱ) 若的解集包含,求的取值范圍.

          【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.

          【解析】(Ⅰ)當(dāng)時(shí),=

          當(dāng)≤2時(shí),由≥3得,解得≤1;

          當(dāng)2<<3時(shí),≥3,無解;

          當(dāng)≥3時(shí),由≥3得≥3,解得≥8,

          ≥3的解集為{|≤1或≥8};

          (Ⅱ) ,

          當(dāng)∈[1,2]時(shí),==2,

          ,有條件得,即,

          故滿足條件的的取值范圍為[-3,0]

           

          查看答案和解析>>

          設(shè),  

          (1)當(dāng)時(shí),求曲線處的切線方程;

          (2)如果存在,使得成立,求滿足上述條件的最大整數(shù);

          (3)如果對任意的,都有成立,求實(shí)數(shù)的取值范圍.

          【解析】(1)求出切點(diǎn)坐標(biāo)和切線斜率,寫出切線方程;(2)存在,轉(zhuǎn)化解決;(3)任意的,都有成立即恒成立,等價(jià)于恒成立

           

          查看答案和解析>>

          設(shè)函數(shù)

          (1)當(dāng)時(shí),求曲線處的切線方程;

          (2)當(dāng)時(shí),求的極大值和極小值;

          (3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

          【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

          解:(1)當(dāng)……2分

             

          為所求切線方程。………………4分

          (2)當(dāng)

          ………………6分

          遞減,在(3,+)遞增

          的極大值為…………8分

          (3)

          ①若上單調(diào)遞增。∴滿足要求!10分

          ②若

          恒成立,

          恒成立,即a>0……………11分

          時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)取得極值

          (1)求的單調(diào)區(qū)間(用表示);

          (2)設(shè),,若存在,使得成立,求的取值范圍.

          【解析】第一問利用

          根據(jù)題意取得極值,

          對參數(shù)a分情況討論,可知

          當(dāng)時(shí)遞增區(qū)間:    遞減區(qū)間: ,

          當(dāng)時(shí)遞增區(qū)間:    遞減區(qū)間: ,

          第二問中, 由(1)知: ,

           

          從而求解。

          解:

          …..3分

          取得極值, ……………………..4分

          (1) 當(dāng)時(shí)  遞增區(qū)間:    遞減區(qū)間: ,

          當(dāng)時(shí)遞增區(qū)間:    遞減區(qū)間: , ………….6分

           (2)  由(1)知: ,

          ,

           

          ……………….10分

          , 使成立

              得:

           

          查看答案和解析>>

          當(dāng)函數(shù)取得最大值時(shí),___________.

          【解析】函數(shù)為,當(dāng)時(shí),,由三角函數(shù)圖象可知,當(dāng),即時(shí)取得最大值,所以.

           

          查看答案和解析>>


          同步練習(xí)冊答案