日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即.所以在上是增函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

          (1)求函數(shù)的解析式; (2)若,證明:.

          【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。

          (1)解:設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

          (2) 證明:令,……6分

          ……8分

          ,∴,∴上單調(diào)遞增.……10分

          ,即

           

          查看答案和解析>>

          設(shè)函數(shù)

          (1)當(dāng)時(shí),求曲線處的切線方程;

          (2)當(dāng)時(shí),求的極大值和極小值;

          (3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

          【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

          解:(1)當(dāng)……2分

             

          為所求切線方程!4分

          (2)當(dāng)

          ………………6分

          遞減,在(3,+)遞增

          的極大值為…………8分

          (3)

          ①若上單調(diào)遞增!酀M足要求。…10分

          ②若

          恒成立,

          恒成立,即a>0……………11分

          時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是

           

          查看答案和解析>>

          已知函數(shù),

          (1)求函數(shù)的定義域;

          (2)求函數(shù)在區(qū)間上的最小值;

          (3)已知,命題p:關(guān)于x的不等式對(duì)函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

          【解析】第一問中,利用由 即

          第二問中,,得:

          ,

          第三問中,由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。

          解:(1)由 即

          (2),得:

          (3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時(shí),

          當(dāng)命題p為假,命題q為真時(shí),,

          所以

           

          查看答案和解析>>

          已知函數(shù).

          (Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

          (Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

          【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。

          第二問中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

          解:(1)

          (2)不等式 ,即,即.

          轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

          即不等式上恒成立.

          即不等式上恒成立.

          設(shè),則.

          設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

          在區(qū)間上是減函數(shù)。又

          故存在,使得.

          當(dāng)時(shí),有,當(dāng)時(shí),有.

          從而在區(qū)間上遞增,在區(qū)間上遞減.

          [來源:]

          所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;

          故使命題成立的正整數(shù)m的最大值為5

           

          查看答案和解析>>

          中,滿足,邊上的一點(diǎn).

          (Ⅰ)若,求向量與向量夾角的正弦值;

          (Ⅱ)若,=m  (m為正常數(shù)) 且邊上的三等分點(diǎn).,求值;

          (Ⅲ)若的最小值。

          【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量的夾角為,則

          =,得,又,則為所求

          第二問因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以,

          (1)當(dāng)時(shí),則= 

          (2)當(dāng)時(shí),則=

          第三問中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">,;

          所以于是

          從而

          運(yùn)用三角函數(shù)求解。

          (Ⅰ)解:設(shè)向量與向量的夾角為,則

          =,得,又,則為所求……………2

          (Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以

          (1)當(dāng)時(shí),則=;-2分

          (2)當(dāng)時(shí),則=;--2分

          (Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">,;

          所以于是

          從而---2

          ==

          =…………………………………2

          ,則函數(shù),在遞減,在上遞增,所以從而當(dāng)時(shí),

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案